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SHARP CONDITIONS ON GLOBAL EXISTENCE AND BLOW-UP IN A

DEGENERATE TWO-SPECIES AND CROSS-ATTRACTION SYSTEM

JOSÉ ANTONIO CARRILLO AND KE LIN

ABSTRACT. We consider a degenerate chemotaxis model with two-species and
two-stimuli in dimension d ≥ 3 and find two critical curves intersecting at one
same point which separate the global existence and blow up of weak solutions to
the problem. More precisely, above these curves (i.e. subcritical case), the problem
admits a global weak solution obtained by the limits of strong solutions to an ap-
proximated system. Based on the second moment of solutions, initial data are con-
structed to make sure blow up occurs in finite time below these curves (i.e. critical
and supercritical cases). In addition, the existence or non-existence of minimizers
of free energy functional is discussed on the critical curves and the solutions exist
globally in time if the size of initial data is small. We also investigate the crossing
point between the critical lines in which a refined criteria in terms of the masses is
given again to distinguish the dichotomy between global existence and blow up.
We also show that the blow ups is simultaneous for both species.

1. INTRODUCTION

The interaction motion of two cell populations in breast cancer cell invasion

models in Rd (d ≥ 3) have been described by the following chemotaxis system
with two chemicals and nonlinear diffusion (cf. [20, 30])











































ut = ∆um1 −∇ · (u∇v), x ∈ Rd, t > 0,

−∆v = w, x ∈ Rd, t > 0,

wt = ∆wm2 −∇ · (w∇z), x ∈ Rd, t > 0,

−∆z = u, x ∈ R
d, t > 0,

u(x, 0) = u0(x), w(x, 0) = w0(x), x ∈ Rd,

(1.1)

where m1, m2 > 1 are constants. Here, u(x, t) and w(x, t) denote the density of
the macrophages and the tumor cells, v(x, t) and z(x, t) denote the concentration
of the chemicals produced by w(x, t) and u(x, t), respectively. For simplicity, the
initial data are assumed to satisfy

u0 ∈ L1(Rd; (1 + |x|2)dx) ∩ L∞(Rd), ∇u
m1
0 ∈ L2(Rd) and u0 ≥ 0,

w0 ∈ L1(Rd; (1 + |x|2)dx) ∩ L∞(Rd), ∇wm2
0 ∈ L2(Rd) and w0 ≥ 0.

(1.2)
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Since the solutions to the Poisson equations can be written by the Newtonian po-
tential such as

v(x, t) =K ∗ w = cd

∫

Rd

w(y, t)

|x − y|d−2
dy, z(x, t) = K ∗ u = cd

∫

Rd

u(y, t)

|x − y|d−2
dy

with K(x) = cd

|x|d−2 and cd is the surface area of the sphere S
d−1 in R

d, the original

system (1.1) can be regarded as the interaction between two populations


















ut = ∆um1 −∇ · (u∇K ∗ w), x ∈ Rd, t > 0,

wt = ∆wm2 −∇ · (w∇K ∗ u), x ∈ Rd, t > 0,

u(x, 0) = u0(x), w(x, 0) = w0(x), x ∈ Rd,

(1.3)

where it follows that the solutions obey the mass conservation

M1 :=
∫

Rd
u(x, t)dx =

∫

Rd
u0(x)dx and M2 :=

∫

Rd
w(x, t)dx =

∫

Rd
w0(x)dx.

The associated free energy functional F for (1.1) or (1.3) is given by

F [u(t), w(t)] =
1

m1 − 1

∫

Rd
um1 dx +

1

m2 − 1

∫

Rd
wm2 dx − cdH[u, w],

which is non-increasing with respect to time since for smooth case it satisfies the
following decreasing property

d

dt
F [u(t), w(t)] =−

∫

Rd
u
∣

∣

∣

m1

m1 − 1
∇um1−1 −∇v

∣

∣

∣

2
dx

−
∫

Rd
w
∣

∣

∣

m2

m2 − 1
∇wm2−1 −∇z

∣

∣

∣

2
dx,

where

H[u, w] =
∫∫

Rd×Rd

u(x, t)w(y, t)

|x − y|d−2
dxdy.

Only one-single population and chemical signal consisting of chemotaxis system
is the well-known Keller-Segel model by taking into account volume filling con-
straints (see [28, 38, 9]) reading as







ut = ∆um1 −∇ · (u∇K ∗ u), x ∈ Rd, t > 0,

u(x, 0) = u0(x), x ∈ R
d,

(1.4)

which has immensely investigated over the last decades. See [3, 23, 28, 39, 13] for
the biological motivations and a complete overview of mathematical results for
related more general aggregation-diffusion models. Here the diffusion exponent
m1 is taken to be supercritical 0 < m1 < mc := 2 − 2/d, critical m1 = mc and
subcritical m1 > mc if d ≥ 3. The critical number mc is chosen to produces a
balance between diffusion and potential drift in mass invariant scaling. For the
subcritical m1 > mc in the sense that diffusion dominates, the solutions are globally
solvable without any restriction on the size of the initial data [29, 43, 45]. However,
in the supercritical case, the attraction is stronger leading to a coexistence of global
existence of solutions and blow-up behavior. More precisely, finite-time blow up
occurs for large initial data, see [11] for m1 = 1, [17] for m1 = 2d/(d + 2), [16]
for 2d/(d + 2) < m1 < mc, and [43] for 1 < m1 < mc. But there also exists a
global weak solution with decay properties under some smallness condition on
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the initial mass [4, 17, 18, 45]. The critical case m1 = mc is investigated in [6, 44]
showing the existence of a sharp mass constant M∗ allowing for a dichotomy: if
‖u‖1 = M1 < M∗ the solutions exist for all time, whereas if M1 ≥ M∗ there exists
solution with non-positive free energy functional blowing up. In addition, such
similar dichotomy was found in [8, 19, 24] earlier in dimension d = 2 and linear
diffusion m1 = 1 for (1.4) with K(x) = −1/(2π) log |x| , where M∗ was replaced
by 8π. We also note that the results in [7] prove that solutions blow up as a delta
Dirac at the center of mass as time increases in critical mass M1 = 8π. Sufficient
conditions for nonlinear diffusion m1 > 1 to prevent blow up are derived in [9].

The variational viewpoint to analyse problems of the type (1.4) has also been an
active field of research. For instance, there have been recent results about the prop-
erties of global minimizers of the corresponding free energy functional, including
the existence, radial symmetry and uniqueness and so on, since they not only cor-
respond to steady states of (1.4) in some particular cases, but also are candidates for
the large time asymptotics of solutions to (1.4). Lion’s concentration-compactness
principle [36] (see also [2]) can be directly applied to the subcritical m1 > mc if
d ≥ 3 and allows the existence of minimizer which further satisfies some regu-
larities properties (see [15]). The uniqueness of minimizer in this case is ensured
in [33] and such unique minimizer is also an exponential attractor of solutions of
(1.4) when the initial data is radially symmetric and compactly supported by using
the mass comparison principle (see [29]). In the critical case m1 = mc, the free en-
ergy functional doses not admit global minimizers except for the critical mass case
M1 = M∗ introduced above [10]. Such minimizers were used in [6] to describe
the infinite time blow-up profile. For the nonlinear-diffusion in two dimension,
the long time asymptotics of solutions is fully characterized in [14] based on the
unique existence of radial minimizer of F [12]. We refer to [5] for a discussion on
the existence of many stationary states for m1 = 1 and d = 2 in the critical case
M1 = 8π and their basins of attraction.

Back to linear two-species system (1.1) in d = 2, similar to the role of the critical
mass 8π in (1.4) ([8, 19]), the critical curve M1M2 − 4π(M1 + M2) = 0 for two
species is discovered in [22]: solutions exist globally if M1M2 − 4π(M1 + M2) < 0
and blow up occurs if M1 M2 − 4π(M1 + M2) > 0. The key tool for the proof of
the global existence part is using the Moser-Trudinger inequality as in [42] in two
dimensions. One can use partial results in [42] to check that mimimizers indeed
exist in the case M1 M2 − 4π(M1 + M2) = 0. We also mention that such nonlinear
system (1.1) and the one-single population system (1.4) can be formally regarded
as gradient flows of the free energy functional in the probability measure space
with the Euclidean Wasserstein metric [1, 25]. For general n-component multi-
populations chemotaxis system, in [26, 27] the authors have made considerable
progress on these aspects and obtain the global arguments in subcritical and critical
cases. The Neumann initial-boundary value problem is analysed in [34, 35, 47, 48].

The aim of this paper is to give a thorough understanding of the well-posedness
and asymptotic behavior for (1.1) and (1.3) in d ≥ 3 and to show the existence or
non-existence of global minimizers in critical cases. We make use of bold faces
m, A, B, I, M, · · · to denote two-dimensional vectors through the paper and as-
sume that A = (a1, a2) ≤ (≥)B = (b1, b2) means that a1 ≤ (≥)b1 and b1 ≤ (≥)b2,
respectively. If (u, w) is a solution of (1.3), then for any λ > 0 the following scaling

uλ(x, t) = λm2 u(λ
m1+m2−m1m2

2 x, λm1 t), wλ(x, t) = λm1 w(λ
m1+m2−m1m2

2 x, λm2 t)
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is also a solution, where the above scaling becomes mass invariant for both u and
w if and only if m := (m1, m2) = (mc, mc). When m satisfy

m1m2 + 2m1/d = m1 + m2, (1.5)

the mass conservation law only holds for w, whereas only u preserves L1-norm if

m1m2 + 2m2/d = m1 + m2. (1.6)

The curves (1.5) and (1.6) can be shown to be the sharp conditions separating
the global existence and blow up. Our main result in Theorem 1.3 shows the
following dichotomy: above the two red curves in Figure 1, in the sense that
m1m2 + 2m1/d > m1 + m2 or m1m2 + 2m2/d > m1 + m2, weak solutions globally
exists and blow up occurs below the red curves for certain initial data regardless of
their initial masses (see Theorem 1.3). Several results are also obtained at the criti-
cal curves (see Theorem 1.4). In addition, both two lines will intersect at the point

(mc, mc). Therefore, we consider the (m1, m2) ∈ (1, ∞)2 parameter range divided
by the following three critical cases (red curve in Figure 1):

Line L1 : m1m2 + 2m1/d = m1 + m2 with m1 ∈ (mc, d/2) , m2 ∈ (1, mc) ;

Line L2 : m1m2 + 2m2/d = m1 + m2 with m1 ∈ (1, mc) , m2 ∈ (mc, d/2) ;

The intersection point I := (mc, mc),

0 m1

m2

1

1

mc

mc

d/2

d/2

m1m2 + 2m1/d = m1 + m2

m1m2 + 2m2/d = m1 + m2m1m2 + 2m2/d = m1 + m2

I : (mc, mc)

L1

L2

FIGURE 1. Parameter lines determining the critical regimes.

Based on the above discussion, we say that m = (m1, m2) is subcritical if

m1m2 + 2m1/d > m1 + m2 or m1m2 + 2m2/d > m1 + m2,
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and m = (m1, m2) is supercritical if

m1m2 + 2m1/d < m1 + m2 and m1m2 + 2m2/d < m1 + m2.

Notice that this corresponds to be above (subcritical) or below (supercritical) the

red curves in Figure 1. We also define subsets of L1(Rd) as

SM1
:= { f ≥ 0 : f ∈ L1(Rd) ∩ Lm1 (Rd) and ‖ f‖1 = M1}

and

SM2
:= {g ≥ 0 : g ∈ L1(Rd) ∩ Lm2 (Rd) and ‖g‖1 = M2}.

Now the definition of weak solution for (1.1) or (1.3) is give as

Definition 1.1. Let m1, m2 > 1, d ≥ 3 and T > 0. Suppose the initial data (u0, w0)
satisfies some classical regularities (1.2). Then (u, w) of nonnegative functions defined in

R
d × (0, T) is called a weak solution if

i) (u, w) ∈ (C([0, T); L1(Rd)) ∩ L∞(Rd × (0, T)))2,

(um1 , wm2) ∈ (L2(0, T; H1(Rd)))2;

ii) (u, w) satisfies
∫ T

0

∫

Rd
uφ1tdxdt +

∫

Rd
u0(x)φ1(x, 0)dx =

∫ T

0

∫

Rd
(∇um1 − u∇v) · ∇φ1dxdt,

∫ T

0

∫

Rd
wφ2tdxdt +

∫

Rd
w0(x)φ2(x, 0)dx =

∫ T

0

∫

Rd
(∇wm2 − w∇z) · ∇φ2dxdt,

for any test functions φ1 ∈ D(Rd × [0, T)) and φ2 ∈ D(Rd × [0, T)) with v = K ∗ w
and z = K ∗ u.

For a given weak solution, we also define:

Definition 1.2. Let T > 0. Then (u, w) is called a free energy solution with some reg-
ular initial data (u0, w0) on (0, T) if (u, w) is a weak solution and moreover satisfies

(u(2m1−1)/2, w(2m2−1)/2)) ∈ (L2(0, T; H1(Rd)))2 and

F [u(t), w(t)] +
∫ t

0

∫

Rd
u
∣

∣

∣

m1

m1 − 1
∇um1−1 −∇v

∣

∣

∣

2
dxds

+
∫ t

0

∫

Rd
w
∣

∣

∣

m2

m2 − 1
∇wm2−1 −∇z

∣

∣

∣

2
dxds ≤ F [u0, w0]

(1.7)

for all t ∈ (0, T) with v = K ∗ w and z = K ∗ u.

Our first main result for (1.1) or (1.3) above or below lines L1 and L2 is:

Theorem 1.3. Let m1, m2 > 1. Suppose that the initial data (u0, w0) with ‖u0‖1 =
M1, ‖w0‖1 = M2 fulfills (1.2). Then
i) If m is subcritical, there exists a global free energy solution.
ii) If m is supercritical, then one can construct large initial data ensuring blow up in finite
time.

On the lines L1, L2 and intersection point I, our second main result is as follows.

Theorem 1.4. Let m1, m2 > 1. Suppose that the initial data (u0, w0) with ‖u0‖1 =
M1, ‖w0‖1 = M2 fulfills (1.2). Then

i) If m is I, then there exists a number Mc > 0 such that if M1 M2 < M2
c , solutions

globally exist and if M1M2/(Mmc
1 + Mmc

2 ) > M2/d
c /2, there exists a finite time blow-up
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solution. Moreover, non-zero global minimizers of F exist in SM1
× SM2

if we are at the
crossing point M = (Mc, Mc).

ii) If m is on L1, there exists a number M2c > 0 with the following properties: if
M2 < M2c, solutions globally exist and inf f∈SM1

infg∈SM2
F [ f , g] = 0 if M2 = M2c,

but there exist no non-zero global minimizers of F in SM1
× SM2

. In addition, blow-up
solution exists if

(

∫

Rd u
m1/m2
0 dx

)m2/m1 (∫

Rd w0dx
)

(

∫

Rd u
m1/m2
0 dx

)m2
+
(∫

Rd w0dx
)m2

> N0 with some N0 > 0.

If m is on L2, there exists M1c > 0 with the similar properties for M1 and blow-up solution
exists if

(∫

Rd u0dx
)

(

∫

Rd w
m2/m1
0 dx

)m1/m2

(∫

Rd u0dx
)m1 +

(

∫

Rd w
m2/m1
0 dx

)m1
> N0.

iii) A simultaneous blow-up phenomenon exists if m is critical .

We summarize our second main result on the intersection point I, see Figure

2. The blue curve M1M2 = M2
c intersects with the green curve M1 M2/(Mmc

1 +

Mmc
2 ) = M2/d

c /2 at the point J = (Mc, Mc). Theorem 1.4 implies that below the

curve M1M2 = M2
c solutions globally exist and above the curve M1 M2/(Mmc

1 +

Mmc
2 ) = M2/d

c /2 blow up happens.

0 M1

M2

Mc

Mc

M1M2/(Mmc
1 + Mmc

2 ) = M2/d
c /2

J : (Mc, Mc)

M1M2 = M2
c

FIGURE 2. Parameter lines on intersection point I.
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It is an open problem to determine the sharp relation between the masses lead-
ing to dichotomy in the intersection point I and the long time asymptotics on the
red curves L1 and L2 in Figure 1.

The organization of the paper is as follows: we first construct an approximated
system for (1.1) in Section 2, and provide an sufficient condition for global exis-
tence of smooth solution and then obtain global weak solution or free energy solu-
tion of (1.1) by passing limits upon a prior estimate. Section 3 deals with properties
of free energy functional, including the lower and upper bounds, and the existence
or non-existence of non-zero minimizers if m is critical. Finally, we prove that the
solutions are globally solvable if m is subcritical or critical with small initial data
in Section 4 and construct blow-up solutions if m is supercritical or critical with
large masses in Section 5.

2. APPROXIMATED SYSTEM

As mentioned in the introduction, we first consider an approximated system










































uǫt(x, t) = ∆(uǫ + ǫ)m1 −∇ · (uǫ∇vǫ), x ∈ Rd, t > 0,

vǫ = K ∗ wǫ, x ∈ Rd, t > 0,

wǫt(x, t) = ∆(wǫ + ǫ)m2 −∇ · (wǫ∇zǫ), x ∈ Rd, t > 0,

zǫ = K ∗ uǫ, x ∈ Rd, t > 0,

uǫ(x, 0) = uǫ
0(x) ≥ 0, wǫ(x, 0) = wǫ

0(x) ≥ 0, x ∈ Rd

(2.1)

with uǫ
0 and wǫ

0 being the convolution of u0 and w0 with a sequence of mollifiers
and ‖uǫ

0‖1 = ‖u‖1 = M1 and ‖wǫ
0‖1 = ‖w‖1 = M2. Then the uniform a priori

estimate for solutions to (2.1) is given if m1 and m2 are suitably large, thus global
weak solution or even free energy solution exists by letting ǫ tends to 0.

By virtue of the local existence of strong solution for only one-single population
chemotaxis system (see [43, Proposition 4.1]), one obtains:

Lemma 2.1. Let m1, m2 > 1. Then there exists Tǫ
max ∈ (0, ∞] denoting the maxi-

mal existence time such that (2.1) has a unique nonnegative strong solution (uǫ, wǫ) ∈
(

W
2,1
p (QT)

)2
with some p > 1, where QT = Rd × (0, T) with T ∈ (0, Tǫ

max] and

W
2,1
p (QT) := {u ∈ Lp(0, T; W2,p(Rd)) ∩ W1,p(0, T; Lp(Rd))}.

Moreover, if Tǫ
max < ∞, then

lim
t→Tǫ

max

[‖uǫ(·, t)‖∞ + ‖wǫ(·, t)‖∞] = ∞.

Now we recall the Hardy-Littlewood-Sobolev (HLS) inequality which we fre-
quently use later (see [31] or [32, Chapter 4]).

Lemma 2.2. Let 0 < λ < d, and let the Riesz potential Iλ(h) of a function h defined by

Iλ(h)(x) =
1

|x|d−λ
∗ h =

∫

Rd

h(y)

|x − y|d−λ
dy, x ∈ R

d.

Then for h ∈ Lκ1 (Rd) and for κ1, κ2 > 1 with 1
κ2

= 1
κ1

− λ
d , then there exists a sharp

constant CHLS = CHLS(d, λ, κ1) > 0 such that

‖Iλ(h)‖κ2 ≤ CHLS‖h‖κ1 .
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An equivalent form of the HLS inequality can be stated that if

1

p
+

1

q
= 1 +

λ

d
,

and h1 ∈ Lp(Rd), h2 ∈ Lq(Rd) with p, q > 1, then there exists a CHLS = CHLS(d, λ, p) >
0 such that

∣

∣

∣

∣

∫∫

Rd×Rd

h1(x)h2(y)

|x − y|d−λ
dxdy

∣

∣

∣

∣

≤ CHLS‖h1‖p‖h2‖q.

Inspired by [46], the global solvability of (2.1) can be achieved based on assump-
tions on the boundedness for ‖uǫ‖m1 and ‖wǫ‖m2 with some large m1 and m2.

Lemma 2.3. Let T ∈ (0, Tǫ
max]. Assume that m satisfies

m1m2 + 2m1m2/d > m1 + m2. (2.2)

Suppose that there exists a constant C > 0 such that (uǫ, wǫ) of (2.1) with initial data
(uǫ

0, wǫ
0) being the convolution of (u0, w0) satisfies

‖uǫ(t)‖m1 ≤ C and ‖wǫ(t)‖m2 ≤ C for t ∈ (0, T). (2.3)

Then there exists a constant C = C(d, m1, m2, u0ǫ, w0ǫ) > 0 such that

‖(uǫ(t), wǫ(t))‖r ≤ C for r ∈ [1, ∞) and t ∈ (0, T) (2.4)

and

‖(vǫ(t), zǫ(t))‖r + ‖(∇vǫ(t),∇zǫ(t))‖r ≤ C for r ∈ [1, ∞] and t ∈ (0, T). (2.5)

Proof. We split the proof into three steps.

Step 1. The choices of p and q. There exist p̄ > 1, q̄ > 1, r1 > 1 and r2 > 1 such that
for some p > p̄ and q > q̄ one has

p >











































m1 + 1, if m1 ≥ d
2 , m2 ≥ d

2 ,

max
{

m1 + 1,
(m1−1)(m2−1)d

d−2m2
,

m1(d−2)
2m2

}

, if m1 ≥ d
2 , m2 <

d
2 ,

max

{

m1 + 1,
dm2

1+d−2m1

d−2m1
,

m1(d−2)
2m2

}

, if m1 <
d
2 , m2 ≥ d

2 ,

max

{

m1 + 1,
dm2

1+d−2m1

d−2m1
,
(m1−1)(m2−1)d

d−2m2
,

m1(d−2)
2m2

}

, if m1 <
d
2 , m2 <

d
2 ,

(2.6)

1

r1
<1 −

d − 2

(q + m2 − 1)d
, (2.7)

1

r1
> max

{

1 −
1

m2
,

d − 2

d
·

p

p + m1 − 1

}

, (2.8)

1

r2
>

d − 2

d
·

1

p + m1 − 1
, (2.9)

1

r2
< min

{

1

m1
, 1 −

d − 2

d
·

q

q + m2 − 1

}

(2.10)
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and

p
m1

− 1
r1

1 − d
2 +

(p+m1−1)d
2m1

+
1

m2
− 1 + 1

r1

1 − d
2 +

(q+m2−1)d
2m2

<
2

d
, (2.11)

as well as

1
m1

− 1
r2

1 − d
2 + (p+m1−1)d

2m1

+

q
m2

− 1 + 1
r2

1 − d
2 + (q+m2−1)d

2m2

<
2

d
. (2.12)

Let us first pick r1 > 1 and r2 > 1 fulfilling

r1 < min

{

d

d − 2
,

m2

m2 − 1

}

(2.13)

and

r2 > m1, (2.14)

and let

q :=
m2(p − 1)

m1
+ 1. (2.15)

In (2.15), p > m1 + 1 implies q > m2 + 1. The assertions in (2.6)-(2.7) and (2.9)
easily hold by sufficiently large p ≥ p̄ with some p̄ > 1 and q ≥ q̄ with some q̄ > 1.

To see the possible choice of r1 satisfying (2.7)-(2.8), we first observe that 1 −
1

m2
≥ d−2

d · p
p+m1−1 is true for any p > 1 if m2 ≥ d

2 , and 1
r1

> 1 − 1
m2

holds by

(2.13) as well as 1 − 1
m2

< 1 − d−2
(q+m2−1)d

for any q > 1. Thus the asserted r1 can

be actually found. When m2 <
d
2 , one has 1

r1
>

d−2
d · p

p+m1−1 > 1 − 1
m2

. The first

inequality is guaranteed by (2.13) and the second is due to

d − 2

d
·

p

p + m1 − 1
> 1 −

1

m2
⇐⇒

(

1

m2
−

2

d

)

p >
(m1 − 1)(m2 − 1)

m2

⇐⇒p >
(m1 − 1)(m2 − 1)d

d − 2m2

by (2.6) if m2 <
d
2 . Moreover, from (2.15) and (2.6), d−2

d · p
p+m1−1 < 1 − d−2

(q+m2−1)d
.

Therefore, one can also choose r1 > 1 satisfying (2.7)-(2.8) in the case m2 <
d
2 .

Similar to the choice of r2, if m1 ≥ d
2 then it follows from (2.14) that 1

r2
<

1
m1

≤

1 − d−2
d · q

q+m2−1 , in which (2.9)-(2.10) can be satisfied due to d−2
d · 1

p+m1−1 <
1

m1
. If

m1 <
d
2 , (2.6) implies d−2

d · 1
p+m1−1 < 1 − d−2

d · q
q+m2−1 <

1
m1

, and the assertion is

true.
Since (2.2) ensures

m1/m2 − m1 < 2m1/d − 1,
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then

p
m1

− 1
r1

1 − d
2 + (p+m1−1)d

2m1

+
1

m2
− 1 + 1

r1

1 − d
2 + (q+m2−1)d

2m2

=

p
m1

− 1
r1

1 +
(p−1)d

2m1

+
1

m2
− 1 + 1

r1

1 +
(q−1)d

2m2

=

p
m1

− 1
r1

1 + (p−1)d
2m1

+
1

m2
− 1 + 1

r1

1 + (p−1)d
2m1

=
p + m1

m2
− m1

p + 2m1
d − 1

·
2

d
<

2

d
,

and

1
m1

− 1
r2

1 − d
2 +

(p+m1−1)d
2m1

+

q
m2

− 1 + 1
r2

1 − d
2 +

(q+m2−1)d
2m2

=

q
m2

+ 1
m1

− 1

1 + (p−1)d
2m1

=
p + m1

m2
− m1

p + 2m1
d − 1

·
2

d
<

2

d
,

which implies (2.11)- (2.12).

Step 2. Inequalities for both u and w. For p > 1 and q > 1, we test (2.1)1 by u
p−1
ǫ and

integrate to find that

1

p

d

dt

∫

Rd
u

p
ǫ dx =− (p − 1)

∫

Rd
u

p−2
ǫ ∇uǫ · (∇(uǫ + ǫ)m1 − uǫ∇vǫ) dx

≤−
4m1(p − 1)

(p + m1 − 1)2

∫

Rd
|∇u

p+m1−1
2

ǫ |2dx −
p − 1

p

∫

Rd
u

p
ǫ ∆vǫdx

=−
4m1(p − 1)

(p + m1 − 1)2

∫

Rd
|∇u

p+m1−1
2

ǫ |2dx +
p − 1

p

∫

Rd
u

p
ǫ wǫdx

with −∆vǫ = wǫ, and similarly,

1

q

d

dt

∫

Rd
w

q
ǫdx ≤−

4m2(q − 1)

(q + m2 − 1)2

∫

Rd
|∇w

q+m2−1
2

ǫ |2dx +
q − 1

q

∫

Rd
uǫw

q
ǫdx

holds by multiplying (2.1)3 by w
q−1
ǫ and −∆zǫ = uǫ. Then

1

p

d

dt

∫

Rd
u

p
ǫ dx +

1

q

d

dt

∫

Rd
w

q
ǫdx +

4m1(p − 1)

(p + m1 − 1)2

∫

Rd
|∇u

p+m1−1
2

ǫ |2dx

+
4m2(q − 1)

(q + m2 − 1)2

∫

Rd
|∇w

q+m2−1
2

ǫ |2dx

≤
p − 1

p

∫

Rd
u

p
ǫ wǫdx +

q − 1

q

∫

Rd
uǫw

q
ǫdx,

(2.16)
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where

∫

Rd
u

p
ǫ wǫdx ≤

(

∫

Rd
u

pr1
ǫ dx

) 1
r1
(

∫

Rd
w

r′1
ǫ dx

) 1
r′
1 (2.17)

and

∫

Rd
uǫw

q
ǫdx ≤

(

∫

Rd
ur2

ǫ dx

)
1
r2
(

∫

Rd
w

qr′2
ǫ dx

)
1
r′2 (2.18)

by Hölder’s inequality with r1, r2 > 1, r′1 = r1
r1−1 and r′2 = r2

r2−1 . We begin with

estimating the right sides of (2.17)-(2.18) based on the choices of p, q, r1 and r2 in
Step 1. The assumption (2.6) ensures

pr1 > m1, (2.19)

and

pr1 <
(p + m1 − 1)d

d − 2
(2.20)

by (2.8). Then by a variant of the Gagliardo-Nirenberg inequality (see [45, Lemma
6]),

‖ϕ‖k2
≤ C

2
r+m−1 ‖ϕ‖1−σ

k1
‖∇ϕ

r+m−1
2 ‖

2σ
r+m−1
2 (2.21)

with m ≥ 1, k1 ∈ [1, r + m − 1] and 1 ≤ k1 ≤ k2 ≤ (r+m−1)d
d−2 with d ≥ 3, σ =

r+m−1
2

(

1
k1
− 1

k2

) (

1
d − 1

2 + r+m−1
2k1

)−1
, we pick r = p, m = m1, k1 = m1, k2 = pr1 in

(2.21) and use (2.19)-(2.20) to find

(

∫

Rd
u

pr1
ǫ dx

)
1
r1
= ‖uǫ‖

p
pr1

≤ C‖uǫ‖
p(1−σ)
m1

‖∇u
p+m1−1

2
ǫ ‖

p 2σ
p+m1−1

2

with

σ =
p + m1 − 1

2

1
m1

− 1
pr1

1
d − 1

2 + p+m1−1
2m1

∈ (0, 1),

where invoking (2.3) we further obtain

(

∫

Rd
u

pr1
ǫ dx

)
1
r1
≤ C‖∇u

p+m1−1
2

ǫ ‖

p
m1

− 1
r1

1
d
− 1

2 +
p+m1−1

2m1
2 .

Likewise, (2.7)-(2.8) warrants that

m2 < r′1 <
(q + m2 − 1)d

d − 2
,

which allows one to make use of the Gagliardo-Nirenberg inequality and the upper
bound for ‖w‖m2 in (2.3) to estimate

(

∫

Rd
w

r′1
ǫ dx

)
1
r′
1 = ‖wǫ‖r′1

≤ C‖∇w
q+m2−1

2
ǫ ‖

1
m2

− 1
r′
1

1
d
− 1

2 +
q+m2−1

2m2
2 .
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Then

(

∫

Rd
u

pr1
ǫ dx

)
1
r1
(

∫

Rd
w

r′1
ǫ dx

)
1
r′
1

≤ C‖∇u
p+m1−1

2
ǫ ‖

p
m1

− 1
r1

1
d
− 1

2 +
p+m1−1

2m1
2 · ‖∇w

q+m2−1
2

ǫ ‖

1
m2

− 1
r′
1

1
d
− 1

2 +
q+m2−1

2m2
2

= C‖∇u
p+m1−1

2
ǫ ‖

p
m1

− 1
r1

1
d
− 1

2 +
p+m1−1

2m1
2 · ‖∇w

q+m2−1
2

ǫ ‖

1
m2

−1+ 1
r1

1
d
− 1

2 +
q+m2−1

2m2
2 .

(2.22)

To estimate the right side of (2.18), we use (2.10) and (2.9) to obtain

m1 < r2 <
(p + m1 − 1)d

d − 2
.

Then the Gagliardo-Nirenberg inequality implies

(

∫

Rd
ur2

ǫ dx

)
1
r2

≤C‖∇u
p+m1−1

2
ǫ ‖

1
m1

− 1
r2

1
d
− 1

2 +
p+m1−1

2m1
2

by (2.3). We also obtain

m2 < qr′2 <
(q + m2 − 1)d

d − 2

by (2.10) and (2.15), and choose r = q, m = m2, k1 = m2, k2 = qr′2 in (2.21) to see
that

(

∫

Rd
w

qr′2
ǫ dx

)
1
r′2 =‖wǫ‖

q

qr′2
≤ C‖wǫ‖

q(1−σ)
m2

‖∇w
q+m2−1

2
ǫ ‖

q 2σ
q+m2−1

2

≤C‖∇w
q+m2−1

2
ǫ ‖

q
m2

− 1
r′2

1
d
− 1

2 +
q+m2−1

2m2
2

=C‖∇w
q+m2−1

2
ǫ ‖

q
m2

−1+ 1
r2

1
d
− 1

2 +
q+m2−1

2m2
2

with

σ =
q + m2 − 1

2

1
m2

− 1
qr′2

1
d − 1

2 +
q+m2−1

2m2

.

Then

(

∫

Rd
u

r2
ǫ dx

) 1
r2
(

∫

Rd
w

qr′2
ǫ dx

) 1
r′2

≤ C‖∇u
p+m1−1

2
ǫ ‖

1
m1

− 1
r2

1
d
− 1

2 +
p+m1−1

2m1
2 ‖∇w

q+m2−1
2

ǫ ‖

q
m2

−1+ 1
r2

1
d
− 1

2 +
q+m2−1

2m2
2 ,
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which combines with (2.16) and (2.22) ensures that

1

p

d

dt

∫

Rd
u

p
ǫ dx +

1

q

d

dt

∫

Rd
w

q
ǫdx +

4m1(p − 1)

(p + m1 − 1)2

∫

Rd
|∇u

p+m1−1
2

ǫ |2dx

+
4m2(q − 1)

(q + m2 − 1)2

∫

Rd
|∇w

q+m2−1
2

ǫ |2dx

≤
p − 1

p

(

∫

Rd
u

pr1
ǫ dx

)
1
r1
(

∫

Rd
w

r′1
ǫ dx

)
1
r′
1

+
q − 1

q

(

∫

Rd
ur2

ǫ dx

)
1
r2
(

∫

Rd
w

qr′2
ǫ dx

)
1
r′2

≤C‖∇u
p+m1−1

2
ǫ ‖

p
m1

− 1
r1

1
d
− 1

2 +
p+m1−1

2m1
2 · ‖∇w

q+m2−1
2

ǫ ‖

1
m2

−1+ 1
r1

1
d
− 1

2 +
q+m2−1

2m2
2

+ C‖∇u
p+m1−1

2
ǫ ‖

1
m1

− 1
r2

1
d
− 1

2 +
p+m1−1

2m1
2 · ‖∇w

q+m2−1
2

ǫ ‖

q
m2

−1+ 1
r2

1
d
− 1

2 +
q+m2−1

2m2
2 .

(2.23)

Step 3. Boundedness for uǫ and wǫ in Lp- and Lq- spaces. Let γ1 > 0, γ2 > 0 be such
that γ1 + γ2 < 2. For ǫ > 0, a direct application of Young’s inequality implies that

αγ1 βγ2 ≤ ǫ(α2 + β2) + C. (2.24)

From Step 1, there exist some p > p̄ and q > q̄ with some p̄ > 1 and q̄ > 1 such
that

p
m1

− 1
r1

1
d − 1

2 + p+m1−1
2m1

+
1

m2
− 1 + 1

r1

1
d − 1

2 +
q+m2−1

2m2

< 2

and
1

m1
− 1

r2

1
d − 1

2 + p+m1−1
2m1

+

q
m2

− 1 + 1
r2

1
d − 1

2 + q+m2−1
2m2

< 2,

where

1

p

d

dt

∫

Rd
u

p
ǫ dx +

1

q

d

dt

∫

Rd
w

q
ǫdx +

2m1(p − 1)

(p + m1 − 1)2

∫

Rd
|∇u

p+m1−1
2

ǫ |2dx

+
2m2(q − 1)

(q + m2 − 1)2

∫

Rd
|∇w

q+m2−1
2

ǫ |2dx ≤ C

(2.25)

by (2.23)-(2.24). One may invoke the Gagliardo-Nirenberg inequality with ‖u‖1 =
M1 and ‖w‖1 = M2 and Young’s inequality to obtain

1

p

∫

Rd
u

p
ǫ dx =

1

p
‖uǫ‖

p
p ≤ C‖∇u

p+m1−1
2

ǫ ‖

p−1

1
d
− 1

2 +
p+m1−1

2
2

≤
2m1(p − 1)

(p + m1 − 1)2

∫

Rd
|∇u

p+m1−1
2

ǫ |2dx + C

and

1

q

∫

Rd
w

q
ǫdx ≤

2m2(q − 1)

(q + m2 − 1)2

∫

Rd
|∇w

q+m2−1
2

ǫ |2dx + C
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by the fact that

p − 1
1
d − 1

2 +
p+m1−1

2

< 2 and
q − 1

1
d − 1

2 +
q+m2−1

2

< 2.

Writing y(t) = 1
p

∫

Rd u
p
ǫ dx + 1

q

∫

Rd w
q
ǫdx, we obtain from (2.25) that

y′(t) + y(t) ≤ C for t ∈ (0, T).

Then

‖uǫ(t)‖p ≤ C and ‖wǫ(t)‖q ≤ C for t ∈ (0, T),

which implies that (2.4) holds.
Step 4. Improve the regularities of v and z. As

vǫ = K ∗ wǫ = cd

∫

Rd

wǫ(y)

|x − y|d−2
dy, zǫ = cd

∫

Rd

uǫ(y)

|x − y|d−2
dy,

an application of the HLS inequality ensures that

‖|∇vǫ|‖r ≤cd(d − 2) ‖I1(wǫ)‖r ≤ C ‖wǫ‖dr/(d+r) ,

‖|∇zǫ|‖r ≤C ‖uǫ‖dr/(d+r) .
(2.26)

Furthermore, observing that the Calderon-Zygmund inequality yields the exis-
tence of a constant C = C(r) > 0 such that

‖∂xi
∂x j

vǫ‖r ≤C ‖wǫ‖r ,

‖∂xi
∂x j

zǫ‖r ≤C ‖uǫ‖r , (1 ≤ i, j ≤ d),

we combine (2.4), (2.26) with the Morrey’s inequality to see that

‖(vǫ(t), zǫ(t))‖r + ‖(∇vǫ(t),∇zǫ(t))‖r ≤ C for r ∈ [1, ∞] and t ∈ (0, T).

Thus we finish our proof. �

Upon the boundedness arguments in Lemma 2.3, we obtain a global weak solu-
tion by letting a subsequence of ǫ approaches to 0.

Lemma 2.4. Under the same assumption in Lemma 2.3, there exists C > 0 independent
of ǫ such that the strong solution (uǫ, wǫ) of (2.1) satisfies

‖(uǫ(t), wǫ(t))‖∞ ≤ C for all t ∈ (0, T). (2.27)

Moreover, there exists a global weak solution (u, w) of (1.1) which also satisfies a uniform
estimate.

Proof. Relying on Lemma 2.3, we apply the Moser’s iteration technique to obtain a
priori estimate of solution in L∞. Then this local solution can be extended globally
in time from the extensibility criterion in Lemma 2.1, which indeed establishes
(2.27), see [45, Proposition 10]. Moreover, from (2.27) there exists (u, v, w, z) with
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the regularities given in Definition 1.1 such that, up to a subsequence, ǫn → 0,

uǫn →u strongly in C([0, T); L
p
loc(R

d)) and a.e. in R
d × (0, T),

∇u
m1
ǫn ⇀∇um1 weakly- ∗ in L∞((0, T); L2(Rd)),

wǫn →w strongly in C([0, T); L
p
loc(R

d)) and a.e. in R
d × (0, T),

∇wm2
ǫn ⇀∇wm2 weakly- ∗ in L∞((0, T); L2(Rd)),

vǫn(t) →v(t) strongly in Lr
loc(R

d) and a.e. in (0, T),

∇vǫn(t) →∇v(t) strongly in Lr
loc(R

d) and a.e. in (0, T),

∆vǫn(t) ⇀∆v(t) weakly in Lr
loc(R

d) and a.e. in (0, T),

zǫn (t) →z(t) strongly in Lr
loc(R

d) and a.e. in (0, T),

∇zǫn (t) →∇z(t) strongly in Lr
loc(R

d) and a.e. in (0, T),

∆zǫn (t) ⇀∆z(t) weakly in Lr
loc(R

d) and a.e. in (0, T),

where p ∈ (1, ∞), r ∈ (1, ∞] and T ∈ (0, ∞). Since the above convergence can be
calculated in [44, Section 4], we omit the main proof here. Therefore, we have a

global weak solution (u, v, w, z) over Rd × (0, T) with T > 0.
�

The weak solution obtained in Lemma 2.4 is also a free energy solution given in
Definition 1.2. The proof comes from [43].

Lemma 2.5. Consider a global weak solution in Lemma 2.4, then it is also a global free
energy solution (u, w) of (1.1) given in Definition 1.2.

Proof. Define a weight function

ψ(|x|) =















1, for 0 ≤ |x| ≤ 1,

1 − 2(|x| − 1)2, for 1 < |x| ≤ 3
2 ,

2(2 − |x|)2, for 3
2 < |x| < 2,

0, for |x| ≥ 2,

and define ψl by ψl(x) := ψ
(

|x|
l

)

for any x ∈ Rd and l = 1, 2, 3, · · · . Evidently,

|∇ψl(x)| ≤
C

l
(ψl(x))

1
2 and |∆ψl(x)| ≤

C

l2

is valid with some C > 0. Denote

F [uǫ(t), wǫ(t)] :=
1

m1 − 1

∫

Rd
(uǫ + ǫ)m1ψl(x)dx +

1

m2 − 1

∫

Rd
(wǫ + ǫ)m2ψl(x)dx

−
∫

Rd
uǫvǫdx

=
1

m1 − 1

∫

Rd
(uǫ + ǫ)m1ψl(x)dx −

∫

Rd
uǫvǫdx

+
1

m2 − 1

∫

Rd
(wǫ + ǫ)m2ψl(x)dx −

∫

Rd
wǫzǫdx

+
∫

Rd
∇vǫ · ∇zǫdx.
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Since

1

m1 − 1

d

dt
(uǫ + ǫ)m1 ψl −

d

dt
(uǫvǫ) + uǫvǫt

= ∇ · (∇(uǫ + ǫ)m1 − uǫ∇vǫ) ·

(

m1(uǫ + ǫ)m1−1

m1 − 1
ψl − vǫ

)

,

1

m2 − 1

d

dt
(wǫ + ǫ)m2ψl −

d

dt
(wǫzǫ) + wǫzǫt

= ∇ · (∇(wǫ + ǫ)m2 − wǫ∇zǫ) ·

(

m2(wǫ + ǫ)m2−1

m2 − 1
ψl − zǫ

)

by testing (2.1)1 by
m1(uǫ+ǫ)m1−1

m1−1 ψl − vǫ and (2.1)3 by
m2(wǫ+ǫ)m2−1

m2−1 ψl − zǫ, then the

derivative of F [uǫ(t), wǫ(t)] with respect to time is

d

dt
F [uǫ(t), wǫ(t)] =

1

m1 − 1

d

dt

∫

Rd
(uǫ + ǫ)m1ψl(x)dx −

d

dt

∫

Rd
uǫvǫdx

+
∫

Rd
uǫvǫtdx +

1

m2 − 1

d

dt

∫

Rd
(wǫ + ǫ)m2ψl(x)dx

−
d

dt

∫

Rd
wǫzǫdx +

∫

Rd
wǫzǫtdx

=−
∫

Rd
(∇(uǫ + ǫ)m1 − uǫ∇vǫ) · ∇

(

m1(uǫ + ǫ)m1−1

m1 − 1
ψl − vǫ

)

dx

−
∫

Rd
(∇(wǫ + ǫ)m2 − wǫ∇zǫ) · ∇

(

m2(wǫ + ǫ)m2−1

m2 − 1
ψl − zǫ

)

dx,

which can be written as

d

dt
F [uǫ(t), wǫ(t)] =−

∫

Rd

[

(uǫ + ǫ)∇

(

m1

m1 − 1
(uǫ + ǫ)m1−1 − vǫ

)

+ ǫ∇vǫ

]

·

[

∇

(

m1

m1 − 1
(uǫ + ǫ)m1−1 − vǫ

)

ψl

+

(

m1

m1 − 1
(uǫ + ǫ)m1−1 − vǫ

)

∇ψl +∇vǫ(ψl − 1) + vǫ∇ψl

]

dx

−
∫

Rd

[

(wǫ + ǫ)∇

(

m2

m2 − 1
(wǫ + ǫ)m2−1 − zǫ

)

+ ǫ∇zǫ

]

·

[

∇

(

m2

m2 − 1
(wǫ + ǫ)m2−1 − zǫ

)

ψl

+

(

m2

m2 − 1
(wǫ + ǫ)m2−1 − zǫ

)

∇ψl +∇zǫ(ψl − 1) + zǫ∇ψl

]

dx

=−
∫

Rd
I1 × J1dx −

∫

Rd
I2 × J2dx.

(2.28)
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With Uǫ := m1
m1−1 (uǫ + ǫ)m1−1 − vǫ, we expand the term −

∫

Rd I1 × J1dx to find that

−
∫

Rd
I1 × J1dx =−

∫

Rd
(uǫ + ǫ)ψl |∇Uǫ|

2dx −
∫

Rd
(uǫ + ǫ)(Uǫ + vǫ)∇Uǫ · ∇ψldx

−
∫

Rd
(uǫ + ǫ)(ψl − 1)∇Uǫ · ∇vǫdx − ǫ

∫

Rd
∇(ψlUǫ) · ∇vǫdx

− ǫ
∫

Rd
∇(vǫ(ψl − 1)) · ∇vǫdx,

where by defining Ωl = {x ∈ Rd : l < |x| < 2l}, upon using Young’s inequality,
Hölder’s inequality and (a + b)m ≤ 2m(am + bm) with a, b > 0 and m > 1, with

any η ∈ (0, 1) we deduce from |∇ψl | ≤
C
l (ψl)

1
2 and supp|∇ψl | = Ωl that

−
∫

Rd
(uǫ + ǫ)(Uǫ + vǫ)∇Uǫ · ∇ψldx ≤η

∫

Rd
(uǫ + ǫ)ψl |∇Uǫ|

2dx

+
C

ηl2

(

‖uǫ‖
2m1−1
2m1−1 + ǫ2m1−1|Ωl |

)

,

−
∫

Rd
(uǫ + ǫ)(ψl − 1)∇Uǫ · ∇vǫdx =

∫

Rd
(1 − ψl)∇(uǫ + ǫ)m1 · ∇vǫdx

+
∫

Rd
(uǫ + ǫ)(ψl − 1)|∇vǫ|

2dx

≤
∫

Rd
(uǫ + ǫ)m1∇ψl · ∇vǫdx

−
∫

Rd
(1 − ψl)(uǫ + ǫ)m1∆vǫdx

≤
∫

Rd
(uǫ + ǫ)m1wǫ(1 − ψl)dx

+
C

l

∫

Rd
(um1 + ǫm1) |∇vǫ|dx,

−ǫ
∫

Rd
∇(ψlUǫ) · ∇vǫdx = −ǫ

∫

Rd
ψlUǫwǫdx ≤ǫ‖wǫ‖L1‖Uǫ‖L∞ ,

−ǫ
∫

Rd
∇(vǫ(ψl − 1)) · ∇vǫdx ≤ǫ

∫

Rd
wǫvǫ(1 − ψl)dx.

The regularities of (uǫ, vǫ, wǫ) from Lemmas 2.3-2.4 assert that

−
∫

Rd
I1 × J1dx ≤− (1 − η)

∫

Rd
(uǫ + ǫ)ψl|∇Uǫ|

2dx

+
C

ηl2

(

‖uǫ(t)‖
2m1−1
2m1−1 + ǫ2m1−1|Ωl |

)

+
∫

Rd
(uǫ + ǫ)m1wǫ(1 − ψl)dx +

C

l

∫

Rd

(

u
m1
ǫ + ǫm1

)

|∇vǫ|dx

+ ǫ‖wǫ‖L1‖Uǫ‖L∞ + ǫ
∫

Rd
wǫvǫ(1 − ψl)dx

≤− (1 − η)
∫

Rd
(uǫ + ǫ)ψl|∇Uǫ|

2dx +
C

ηl2

(

1 + ǫ2m1−1|Ωl |
)

+ C
∫

Rd
wǫ(1 − ψl)dx +

C

l
+ ǫC.
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Doing a similar argument for −
∫

Rd I2 × J2dx, and integrating (2.28) over time
shows that

F [uǫ(t), wǫ(t)] ≤F [u0ǫ, w0ǫ]

− (1 − η)
∫ t

0

∫

Rd
(uǫ + ǫ)ψl

∣

∣

∣

∣

m1

m1 − 1
∇(uǫ + ǫ)m1−1 −∇vǫ

∣

∣

∣

∣

2

− (1 − η)
∫ t

0

∫

Rd
(wǫ + ǫ)ψl

∣

∣

∣

∣

m2

m2 − 1
∇(wǫ + ǫ)m2−1 −∇zǫ

∣

∣

∣

∣

2

+
CT

ηl2

(

1 + ǫ2m1−1|Ωl |+ ǫ2m2−1|Ωl |
)

+ C
∫ t

0

∫

Rd
(uǫ + wǫ)(1 − ψl) +

CT

l
+ ǫCT for t ∈ (0, T),

where as ǫ tends to 0,

F [u(t), w(t)] ≤F [u0, w0]− (1 − η)
∫ t

0

∫

Rd
uψl

∣

∣

∣

∣

m1

m1 − 1
∇um1−1 −∇v

∣

∣

∣

∣

2

− (1 − η)
∫ t

0

∫

Rd
wψl

∣

∣

∣

∣

m2

m2 − 1
∇wm2−1 −∇z

∣

∣

∣

∣

2

+ C
∫ t

0

∫

Rd
(u0 + w0)(1 − ψl) +

CT

ηl2
+

CT

l
for t ∈ (0, T)

by the claimed convergence in Lemma 2.4 and a lower semi-continuity of the free
energy dissipation. Finally as l → +∞ and η → 0,

F [u(t), w(t)] ≤F [u0, w0]−
∫ t

0

∫

Rd
u

∣

∣

∣

∣

m1

m1 − 1
∇um1−1 −∇v

∣

∣

∣

∣

2

−
∫ t

0

∫

Rd
w

∣

∣

∣

∣

m2

m2 − 1
∇wm2−1 −∇z

∣

∣

∣

∣

2

for t ∈ (0, T).

Therefore, (u, w) is a free energy solution by the definition.
�

3. THE FREE ENERGY FUNCTIONAL

Now we concentrate on a deeper analysis of the energy functional F given by

F [u(t), w(t)] =
1

m1 − 1

∫

Rd
um1 dx +

1

m2 − 1

∫

Rd
wm2 dx − cdH[u, w]

with decay property F [u(t), w(t)] ≤ F [u0, w0] for t ≥ 0, where

H[u, w] =
∫∫

Rd×Rd

u(x)w(y)

|x − y|d−2
dxdy =

∫

Rd
u(x)I2(w)(x)dx =

∫

Rd
w(y)I2(u)(y)dy.

The estimate for H can be given as follows.

Lemma 3.1. Let η > 0, and let m1, m2, m > 1. If

m < d/2 and mm2 + 2mm2/d ≥ m + m2, (3.1)

then for any f ∈ Lm(Rd) and g ∈ L1(Rd) ∩ Lm2 (Rd), there holds

|H[ f , g]| ≤ η‖ f‖m
m + Cη− 1

m−1 ‖g‖

mm2+2mm2/d−m−m2
(m−1)(m2−1)

1 ‖g‖

m2−2mm2/d

(m−1)(m2−1)
m2

. (3.2)
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Moreover, if

m < d/2 and mm1 + 2mm1/d ≥ m + m1, (3.3)

then for any f ∈ L1(Rd) ∩ Lm1(Rd) and g ∈ Lm(Rd), there holds

|H[ f , g]| ≤ Cη− 1
m−1 ‖ f‖

m1m+2m1m/d−m1−m

(m1−1)(m−1)

1 ‖ f‖

m1−2m1m/d

(m1−1)(m−1)
m1

+ η‖g‖m
m. (3.4)

Proof. Fixing m ∈ (1, d/2), using Hölder’s inequality with 1
m + m−1

m = 1 and the
HLS inequality with λ = 2 in Lemma 2.2, we find that

H[ f , g] =
∫

Rd
f (x)I2(g)(x)dx ≤ ‖ f‖m‖I2(g)‖ m

m−1
≤ CHLS‖ f‖m‖g‖ md

(d+2)m−d
. (3.5)

Since the assumption m + m2 ≤ mm2 + 2mm2/d ensures that

1 <
md

(d + 2)m − d
≤ m2,

then if g ∈ L1(Rd) ∩ Lm2(Rd) with m2 > 1, the following interpolation inequality
holds:

‖g‖ md
(d+2)m−d

≤ ‖g‖θ1
1 ‖g‖1−θ1

m2

with
(d+2)m−d

md = θ1 +
1−θ1

m2
, θ1 ∈ (0, 1). Hence

|H[ f , g]| ≤ CHLS‖ f‖m‖g‖θ1
1 ‖g‖1−θ1

m2

≤ η‖ f‖m
m + Cη− 1

m−1 ‖g‖

mm2+2mm2/d−m−m2
(m−1)(m2−1)

1 ‖g‖

m2−2mm2/d

(m−1)(m2−1)
m2

,

by Young’s inequality, which implies (3.2). (3.4) can be also proved if (3.3) holds.
�

We establish several variants to the HLS inequality on the lines L1, L2 and the
intersection point I.

Lemma 3.2. Let m be on L1 , and let f ∈ Lm1(Rd) and g ∈ L1(Rd) ∩ Lm2 (Rd). Then

C∗ := sup
f 6=0,g 6=0

{

|H[ f , g]|

‖ f‖m1‖g‖2/d
1 ‖g‖1−2/d

m2

}

< ∞.

If m is on L2, and f ∈ L1(Rd) ∩ Lm1 (Rd) and g ∈ Lm2 (Rd), then

C⋆ := sup
f 6=0,g 6=0

{

|H[ f , g]|

‖ f‖2/d
1 ‖ f‖1−2/d

m1
‖g‖m2

}

< ∞.

In addtion, assume that m is I and ( f , g) ∈
(

L1(Rd) ∩ Lmc (Rd)
)2

. Then

Cc := sup
f 6=0,g 6=0

{

H[ f , g]

‖ f‖1/d
1 ‖ f‖mc/2

mc ‖g‖1/d
1 ‖g‖mc/2

mc

}

< ∞. (3.6)

Proof. If m is on L1, then m1 ∈ (mc, d/2) and using (3.5) with m = m1 we have

|H[ f , g]| ≤ CHLS‖ f‖m1‖g‖ m1d

(d+2)m1−d

≤ CHLS‖ f‖m1‖g‖
2
d
1 ‖g‖

1− 2
d

m2
.
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Therefore, C∗ is finite and bounded above by CHLS. It is also easy to see that C⋆ is
controlled by CHLS if m is on L2. Finally, with the help of the HLS inequality and
Hölder’s inequality, we find that

|H[ f , g]| ≤ CHLS‖ f‖ 2d
d+2

‖g‖ 2d
d+2

≤ CHLS‖ f‖1/d
1 ‖ f‖mc/2

mc
‖g‖1/d

1 ‖g‖mc/2
mc

if m is I. Then the definition of Cc is valid. �

Define

M1c = (cdC⋆)
−d/2 (m2/(m2 − 1))d/2 (m1 − 1)−d(m2−1)/(2m2),

M2c = (cdC∗)
−d/2 (m1/(m1 − 1))d/2 (m2 − 1)−d(m1−1)/(2m1),

and

Mc = (2/[cdCc(mc − 1)])d/2 .

The lower and upper bounds for F in the sets SM1
× SM2

below is given next.

Lemma 3.3. Let ( f , g) satisfy f ∈ SM1
and g ∈ SM2

. If m is on L1, then

(cdC∗)
m1

m1−1 (m1 − 1)
m1

m1−1 m
−

m1
m1−1

1

(

M

2m1
d(m1−1)

2c − M

2m1
d(m1−1)

2

)

‖g‖m2
m2

≤ F [ f , g] ≤
2

m1 − 1
‖ f‖m1

m1

+ (cdC∗)
m1

m1−1 (m1 − 1)
m1

m1−1 m
−

m1
m1−1

1

(

M

2m1
d(m1−1)

2c + M

2m1
d(m1−1)

2

)

‖g‖m2
m2

(3.7)

and

inf
f∈SM1

inf
g∈SM2

F [ f , g] = 0, if M2 ∈ (0, M2c].

If m is on L2, then

F [ f , g] ≥ (cdC⋆)
m2

m2−1 (m2 − 1)
m2

m2−1 m
−

m2
m2−1

2

(

M

2m2
d(m2−1)

1c − M

2m2
d(m2−1)

1

)

‖ f‖m1
m1

(3.8)

and

inf
f∈SM1

inf
g∈SM2

F [ f , g] = 0, if M1 ∈ (0, M1c]. (3.9)

If m is I, then

F [ f , g] ≥
(cdCc)2(mc − 1)

4

(

M
4
d
c − M

2
d
1 M

2
d
2

)

‖g‖mc
mc

or

F [ f , g] ≥
(cdCc)2(mc − 1)

4

(

M
4
d
c − M

2
d
1 M

2
d
2

)

‖ f‖mc
mc

.

Furthermore,

inf
f∈SM1

inf
g∈SM2

F [ f , g] = 0, if M1 M2 ∈ (0, M2
c ]. (3.10)
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Proof. By Lemma 3.2, H satisfies

|H[ f , g]| ≤C∗‖ f‖m1‖g‖
2
d
1 ‖g‖

1− 2
d

m2

≤
1

cd(m1 − 1)
‖ f‖m1

m1

+ C∗ (cdC∗)
1

m1−1

(

m1 − 1

m1

)

m1
m1−1

‖g‖

2m1
d(m1−1)

1 ‖g‖
(1− 2

d )
m1

m1−1
m2

=
1

cd(m1 − 1)
‖ f‖m1

m1

+ C∗ (cdC∗)
1

m1−1

(

m1 − 1

m1

)

m1
m1−1

‖g‖

2m1
d(m1−1)

1 ‖g‖m2
m2

.

Then F can be estimated as

F [ f , g] =
1

m1 − 1
‖ f‖m1

m1
+

1

m2 − 1
‖g‖m2

m2
− cdH[ f , g]

≥
1

m2 − 1
‖g‖m2

m2

− (cdC∗)
m1

m1−1

(

m1 − 1

m1

)

m1
m1−1

‖g‖

2m1
d(m1−1)

1 ‖g‖m2
m2

= (cdC∗)
m1

m1−1

(

m1 − 1

m1

)

m1
m1−1

(

M

2m1
d(m1−1)

2c − M

2m1
d(m1−1)

2

)

‖g‖m2
m2

and

F [ f , g] ≤
2

m1 − 1
‖ f‖m1

m1

+ (cdC∗)
m1

m1−1

(

m1 − 1

m1

)

m1
m1−1

(

M

2m1
d(m1−1)

2c + M

2m1
d(m1−1)

2

)

‖g‖m2
m2

.

In the case M2 ≤ M2c, since F ≥ 0, then the infimum is nonnegative. Taking

h1(x, t) =
M1

(4πt)
d
2

e−
|x|2

4t and h2(x, t) =
M2

(4πt)
d
2

e−
|x|2

4t ,

it is obvious that hi ∈ L1(Rd) with ‖hi‖1 = Mi, i = 1, 2, satisfy

‖hi‖
mi
mi

= O(t−
d(mi−1)

2 ),

which implies that hi ∈ SMi
and that F [h1, h2] tends to 0 as t → ∞. Therefore,

inf
f∈SM1

inf
g∈SM2

F [ f , g] = 0.

If m is on L2, we have (3.8) one more by the HLS inequality and Hölder’s in-
equality, and take hi above to see (3.9).

If m is I, since

|H[ f , g]| ≤Cc M
1
d
1 M

1
d
2 ‖ f‖

mc
2

mc ‖g‖
mc
2

mc ≤
1

cd(mc − 1)
‖ f‖mc

mc
+

M
2
d
1 M

2
d
2

cd(mc − 1)M
4
d
c

‖g‖mc
mc
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or

|H[ f , g]| ≤
M

2
d
1 M

2
d
2

cd(mc − 1)M
4
d
c

‖ f‖mc
mc

+
1

cd(mc − 1)
‖g‖mc

mc

by Young’s inequality, then F satisfies

F [ f , g] ≥
1

mc − 1
‖ f‖mc

mc
+

1

mc − 1
‖g‖mc

mc
− cdCc M

1
d
1 M

1
d
2 ‖ f‖

mc
2

mc ‖g‖
mc
2

mc

≥
(cdCc)2(mc − 1)

4

(

4

(cdCc(mc − 1))2
− M

2
d
1 M

2
d
2

)

‖g‖mc
mc

or

F [ f , g] ≥
(cdCc)2(mc − 1)

4

(

4

(cdCc(mc − 1))2
− M

2
d
1 M

2
d
2

)

‖ f‖mc
mc

.

One finally obtains from

F [ f , g] ≤
2

mc − 1
‖ f‖m1

m1
+

(cdCc)2(mc − 1)

4

(

4

(cdCc(mc − 1))2
+ M

2
d
1 M

2
d
2

)

‖g‖mc
mc

that (3.10) is true by taking f = h1 and g = h2. �

The characterization of non-zero minimizers of F in SM1
× SM2

on critical lines
and point is the goal in this subsection. If m is I, the existence of global minimizers
is guaranteed in particular situation. The proof is inspired by [6, Proposition 3.5].

Theorem 3.4. Let m be I. Then there exist a pair of nonnegative, radially symmetric and

non-increasing functions ( f ∗, g∗) ∈
(

L1(Rd) ∩ Lmc(Rd)
)2

such that

H[ f ∗, g∗] = Cc.

In addition, there exists a minimizer ( f , g) ∈ SM1
× SM2

of F if M1 = M2 = Mc, and
the minimizer satisfies

f (x) = g(x) =







1
Rd

0

[

ζ
(

x−x0
R0

)]d/(d−2)
, if x ∈ B (x0, R0) ,

0, if x ∈ Rd\B (x0, R0)

with some R0 > 0 and x0 ∈ Rd, where ζ is the unique positive radial classical solution to
the Lane-Emden equation







−∆ζ = mc−1
mc

ζ1/(mc−1), x ∈ B(0, 1),

ζ = 0, x ∈ ∂B(0, 1).

Proof. We claim that if Cc in (3.6) is obtained by some non-zero f and g, then

g = c0 f with some c0. This is easily verified by the positive definite of |x− y|−(d−2),
see [32, Theorem 9.8]. In fact, suppose that there exist a pair of maximizing non-

negative functions ( f , g) ∈
(

L1(Rd) ∩ Lmc(Rd)
)2

such that

H[ f , g] = Cc‖ f‖
1
d
1 ‖ f‖

mc
2

mc ‖g‖
1
d
1 ‖g‖

mc
2

mc .



THE CRITICAL LINES FOR A CHEMOTAXIS SYSTEM 23

Then by [32, Theorem 9.8] and the HLS inequality,

H[ f , g] ≤
√

H[ f , f ] ·
√

H[g, g]

≤Cc‖ f‖
1
d
1 ‖ f‖

mc
2

mc ‖g‖
1
d
1 ‖g‖

mc
2

mc .

(3.11)

However, (3.11) is an equality if and only if g = c0 f with some constant c0.
Note that

Cc = sup
f 6=0







H[ f , f ]

‖ f‖
2
d
1 ‖ f‖mc

mc

, f ∈ L1(Rd) ∩ Lmc (Rd)







. (3.12)

The existence of a maximizing nonnegative, radially symmetric and non-increasing
f ∗ with ‖ f ∗‖1 = ‖ f ∗‖mc = 1 for (3.12) has been given in [6, Proposition 3.3]. So
choosing g∗ = c0 f ∗, then H[ f ∗, g∗] = c0Cc and the first conclusion has been proved
with c0 = 1.

To derive minimizers for F in the situation M1 = M2 = Mc, with f := Mc f ∗

and g := Mc f ∗ we have ( f , g) ∈ SM1
× SM2

with ‖ f‖1 = ‖ f‖mc = Mc, ‖g‖1 =
‖g‖mc = Mc. After a careful computation we infers that

F [ f , g] = 0

by the definition of Mc and ( f , g) is a non-zero global minimizer of F in SM1
×

SM2
. The precisely description of the set of minimizers of F was derived in [6,

Proposition 3.5], we omit it here and have proved the second conclusion.
�

On L1, we assert that there is no non-zero minimizer of F in SM1
× SM2

if M2 =
M2c. The proof includes two steps: the first one is to derive the nonexistence of
non-trivial classical solution to a Lane-Emden system (see Lemma 3.5), and the
second is to make a contradiction by the achievement of Euler-Largrange equalities
which consist of the Lane-Emden system on the assumption that minimizers of its
free energy exist (see Theorem 3.6 ).

Lemma 3.5. Let M1, M2, ρ > 0, and let m1 > 1 and m2 > 1. Consider a Lane-Emden
system















−∆ϑ(x) = m1−1
m1

ς
1

m2−1 (x), x ∈ Ω1 = Rd,

−∆ς(x) = m2−1
m2

ϑ
1

m1−1 (x), x ∈ Ω2 = B(0, ρ),

ς(x) = 0, x ∈ Rd \ Ω2.

(3.13)

Then (3.13) does not admit any nonnegative and non-trivial classical solution (ϑ, ς) ∈
(

L1/(m1−1)(Rd) ∩ Lm1/(m1−1)(Rd)
)

×
(

L1/(m2−1)(Rd) ∩ Lm2/(m2−1)(Rd)
)

with

‖ϑ1/(m1−1)‖1 = M1 and ‖ς1/(m2−1)‖1 = M2, provided that m is on L1.

Proof. Let

q :=
1

m1 − 1
∈

(

2

d − 2
,

d

d − 2

)

.

The existence/nonexistence of solutions to the general form of Lane-Emden sys-
tem has been investigated in [37, 40, 41], for example. However, the solvability of
(3.13) involving both whole space and bounded domains has not yet known as far
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as we know. We assert that there exists no non-trivial classical solution for (3.13) if
m is on L1.

Consider the following properties: Suppose that ω ∈ C2(Rd) is non-trivial and

satisfies ∆w ≤ 0, x ∈ Rd. Then

ω(x) ≥ C|x|2−d, |x| ≥ 1 (3.14)

by the strong maximum principle (see [40, Proposition 3.4]). Relying on the finite
of ‖ϑ‖q, we have the following contradiction: For R > 1,

M1 ≥
∫

B(0,R)
ϑq = cd

∫ R

0

∫

Sd−1
ϑq(r, θ)rd−1dS(θ)dr,

where one combines with the fact that ∆ϑ ≤ 0 for x ∈ Ω1 = R
d and (3.14) to see

that

M1 ≥C
∫ R

1
rd−1+q(2−d)dr = C

∫ R

1
r

dm1+2−2d
m1−1 −1

dr

=
C(m1 − 1)

dm1 + 2 − 2d

(

R
dm1+2−2d

m1−1 − 1

)

→ ∞ as R → ∞

due to m1 > mc = 2 − 2/d. So (3.13) has no non-trivial and nonnegative classical
solution.

�

Theorem 3.6. Let m be on L1. For all M2 ≤ M2c, then F does not admit any non-zero
minimizer in SM1

× SM2
.

Proof. The left inequality in (3.7) in Lemma 3.3 makes sure that there exists no
minimizer if M2 < M2c. Thus we only consider M2 = M2c and prove it by contra-
diction.
Step 1. Necessary conditions for global minimizers of F . We assume that minimizers
exist and try to present some basic properties of them. Suppose that ( f ∗, g∗) ∈
SM1

× SM2
is a minimizer of F in the sense that F [ f ∗, g∗] = 0. Then

1

m1 − 1
‖ f ∗‖m1

m1
+

1

m2 − 1
‖g∗‖m2

m2
= cdH[ f ∗, g∗]

≤ cdC∗‖ f ∗‖m1‖g∗‖2/d
1 ‖g∗‖1−2/d

m2

≤
1

m1 − 1
‖ f ∗‖m1

m1
+ (cdC∗)

m1
m1−1

(

m1 − 1

m1

)

m1
m1−1

‖g∗‖

2m1
d(m1−1)

1 ‖g∗‖
(1− 2

d )
m1

m1−1
m2

=
1

m1 − 1
‖ f ∗‖m1

m1
+

1

m2 − 1
M

−
2m1

d(m1−1)

2c ‖g∗‖

2m1
d(m1−1)

1 ‖g∗‖m2
m2

=
1

m1 − 1
‖ f ∗‖m1

m1
+

1

m2 − 1
M

−
2m1

d(m1−1)

2c M

2m1
d(m1−1)

2 ‖g∗‖m2
m2

=
1

m1 − 1
‖ f ∗‖m1

m1
+

1

m2 − 1
‖g∗‖m2

m2

(3.15)
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by the HLS inequality, Young’s inequality, the definition of M2c and M2 = M2c. As
a consequence of (3.15), we obtain that

‖ f ∗‖m1
m1

=
1

m2 − 1
M

−
2m1

d(m1−1)

2c ‖g∗‖

2m1
d(m1−1)

1 ‖g∗‖m2
m2

=
1

m2 − 1
M

−
2m1

d(m1−1)

2c M

2m1
d(m1−1)

2 ‖g∗‖m2
m2

=
1

m2 − 1
‖g∗‖m2

m2

(3.16)

and

H[ f ∗, g∗] = C∗‖ f ∗‖m1‖g∗‖2/d
1 ‖g∗‖1−2/d

m2
=

m1

cd(m1 − 1)(m2 − 1)
‖g∗‖m2

m2
.

Step 2. The Euler-Lagrange equalities. Let f and g be symmetric rearrangement of
f ∗ and g∗. Then ( f , g) ∈ SM1

× SM2
satisfies

‖ f‖m1
m1

= ‖ f ∗‖m1
m1

=
1

m2 − 1
‖g∗‖m2

m2
=

1

m2 − 1
‖g‖m2

m2
(3.17)

and

H[ f , g] ≥ H[ f ∗, g∗]

by (3.16) and the Riesz rearrangement properties [31, Lemma 2.1]. Obviously,
F [ f , g] = 0 and ( f , g) is also a minimizer of F . Note that

cdH[ f , g] =
m1

m1 − 1
‖ f‖m1

m1
=

m1

(m1 − 1)(m2 − 1)
‖g‖m2

m2
. (3.18)

Given Ω10 = {x ∈ Rd : f (x) = 0} and Ω1+ = {x ∈ Rd : f (x) > 0} and

introduce φ1 ∈ C∞

0 (Rd) with φ1(x) = φ1(−x) and

ψ1(x) =
f (x)

M1

(

φ1(x)−
1

M1

∫

Rd
f (x)φ1(x)dx

)

.

Then for f ∈ SM1
and fix ǫ ∈ (0, ǫ0 := M1(2‖φ1‖∞)−1), there holds

‖ f + ǫψ1‖1 = M1

and

f + ǫψ1 = f

(

1 +
ǫ

M1

(

φ1(x)−
1

M1

∫

Rd
f (x)φ1(x)dx

))

≥ f

(

1 −
2‖φ1‖∞ǫ

M1

)

≥ 0,

which implies that f + ǫψ1 ∈ SM1
. Moreover, supp (ψ1) ⊂ Ω1+. Then

F [ f + ǫψ1, g]−F [ f , g]

ǫ
=

1

m1 − 1

∫

Ω1+

( f + ǫψ1)
m1 − f m1

ǫ
−
∫

Rd
K ∗ g(x)ψ1(x)dx.

According to F [ f + ǫψ1, g] ≥ F [ f , g], as ǫ → 0, Lebesgue’s dominated conver-
gence theorem shows that

∫

Rd

(

m1

m1 − 1
f m1−1(x)−K ∗ g(x)

)

ψ1(x)dx ≥ 0.
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By replacing −ψ1 by ψ1, one also obtains from above to see that
∫

Rd

(

m1

m1 − 1
f m1−1(x)−K ∗ g(x)

)

ψ1(x)dx = 0,

where

0 =
1

M1

∫

Rd

(

m1

m1 − 1
f m1−1(x)−K ∗ g(x)

)

f (x)φ1(x)dx

−
1

M2
1

∫

Rd
f (x)φ1(x)dx ·

∫

Rd

(

m1

m1 − 1
f m1(x)−K ∗ f (x)g(x)

)

dx

=
1

M1

∫

Rd

(

m1

m1 − 1
f m1−1(x)−K ∗ g(x)

)

f (x)φ1(x)dx

by (3.18). For any choice of symmetric test function φ1 ∈ C∞

0 (Rd), we also obtain

m1

m1 − 1
f m1−1(x)−K ∗ g(x) = 0 a.e. in R

d.

For g, arguing similarly as above and we define Ω20 = {x ∈ Rd : g(x) = 0} and

Ω2+ = {x ∈ Rd : g(x) > 0} and introduce φ2 ∈ C∞
0 (Rd) with φ2(x) = φ2(−x) and

ψ2(x) =
g(x)

M2

(

φ2(x)−
1

M2

∫

Rd
g(x)φ2(x)dx

)

.

Then for g ∈ SM2
and fix ǫ ∈ (0, M2(2‖φ2‖∞)−1), there holds g + ǫψ2 ∈ SM2

. Then

F [ f , g + ǫψ2]−F [ f , g]

ǫ
=

1

m2 − 1

∫

Ω2+

(g + ǫψ2)
m2 − gm2

ǫ
dy

−
∫

Rd
K ∗ f (y)ψ2(y)dy,

where by Lebesgue’s dominated convergence theorem again and replacing −ψ2 by
ψ2, it follows that

∫

Rd

(

m2

m2 − 1
gm2−1(y)−K ∗ f (y)

)

ψ2(y)dy = 0.

Then (3.17) and (3.18) imply that

0 =
1

M2

∫

Rd

(

m2

m2 − 1
gm2−1(y)−K ∗ f (y)

)

g(y)φ2(y)dy

−
1

M2
2

∫

Rd
g(y)φ2(y)dy ·

∫

Rd

(

m2

m2 − 1
gm2(y)−K ∗ f (y)g(y)

)

dy

=
1

M2

∫

Rd

(

m2

m2 − 1
gm2−1(y)−K ∗ f (y)

)

g(y)φ2(y)dy

+
2m1

M2
2(d − 2m1)

‖g‖m2
m2

∫

Rd
g(y)φ2(y)dy

=
1

M2

∫

Rd

(

m2

m2 − 1
gm2−1(y)−K ∗ f (y) +

2m1‖g‖m2
m2

M2(d − 2m1)

)

g(y)φ2(y)dy

on L1. Therefore,

m2

m2 − 1
gm2−1 −K ∗ f +

2m1

M2(d − 2m1)
‖g‖m2

m2
= 0 a.e. in Ω2+. (3.19)



THE CRITICAL LINES FOR A CHEMOTAXIS SYSTEM 27

where we extend above equality to the whole space in the sense that

m2

m2 − 1
gm2−1 =

(

K ∗ f −
2m1

M2(d − 2m1)
‖g‖m2

m2

)

+
a.e. in R

d.

Since g is radially symmetric and non-increasing, there exists ρ ∈ (0, ∞] such that

Ω2+ ⊂ B(0, ρ) and Ω20 ⊂ R
d\B(0, ρ),

and from (3.19) we obtain

m2

m2 − 1
gm2−1 = K ∗ f −

2m1

M2(d − 2m1)
‖g‖m2

m2
a.e. in B(0, ρ).

Then such symmetric non-increasing minimizer ( f , g) ∈ SM1
× SM2

of F satisfies
the following Euler-Lagrange equalities







m1
m1−1 f m1−1(x) = K ∗ g(x) a.e. in Rd,

m2
m2−1 gm2−1(x) = K ∗ f (x)− 2m1

M2(d−2m1)
‖g‖m2

m2
a.e. in B(0, ρ).

(3.20)

Step 3. The regularities of minimizer. From (3.20)1, one invokes the HLS inequality

in Lemma 2.2 to see for g ∈ L1(Rd) ∩ Lm2(Rd) that

f ∈ Lp(Rd) with p ∈

[

d(m1 − 1)

d − 2
,

d(m1 − 1)m2

d − 2m2

]

,

where once more using the HLS inequality again, one concludes that

K ∗ f ∈ Lq(Rd) with q ∈











[

d(m1−1)
d−2m1

,
d(m1−1)m2
d−2m1m2

]

, if d > 2m1m2,
[

d(m1−1)
d−2m1

, ∞

)

, if d ≤ 2m1m2.

In particular, K ∗ f ∈ L
m2

m2−1 (Rd) since m1 + m2 = 2m1/d + m1m2 ≤ 2m1m2/d +
m1m2 and

m2

m2 − 1
∈

[

d(m1 − 1)

d − 2m1
,

d(m1 − 1)m2

(d − 2m1m2)+

)

.

Consequently, gm2−1 ∈ L
m2

m2−1 (Rd), which excludes ρ = ∞ in (3.20)2. Hence ρ < ∞

and

m2

m2 − 1
gm2−1(x) =







K ∗ f (x)− 2m1
M2(d−2m1)

‖g‖m2
m2

, if |x| < ρ,

0, if |x| > ρ

by the monotonicity of g. Moreover, a bootstrap argument ensures that

( f , g) ∈ (L∞(Rd))2.

Letting ϑ := f m1−1 and ς := gm2−1, we readily infer from (3.20)1 that

ϑ(x) =
m1 − 1

m1
K ∗ ς

1
m2−1 (x) a.e. in R

d,

and invoke [21, Theorem 9.9] to have ϑ ∈ W2,r(B(0, ρ)) with r ∈ (m1, ∞) and

−∆ϑ = m1−1
m1

ς
1

m2−1 a.e. x ∈ Rd. Furthermore, from the expression for ς such as

ς(x) =
m2 − 1

m2
K ∗ ϑ

1
m1−1 (x)−

2m1(m2 − 1)

m2M2(d − 2m1)
‖ς‖

m2/(m2−1)
m2/(m2−1)

, x ∈ B(0, ρ),
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by means of the regularity of ϑ and [21, Lemma 4.2], we obtain ς ∈ C2(B(0, ρ))

with −∆ς = m2−1
m2

ϑ
1

m1−1 in B(0, ρ) and [21, Lemma 4.1] ensures that ς ∈ C1(Rd).

Then ς(x) = 0 if |x| = ρ and ς is a classical solution to
{

−∆ς(x) = m2−1
m2

ϑ
1

m1−1 (x), x ∈ B(0, ρ),

ς(x) = 0, x ∈ ∂B(0, ρ).
(3.21)

With the smoothness of ς, [21, Lemma 4.2] applies so as to assert that ϑ ∈ C2(Rd)
and

−∆ϑ(x) =
m1 − 1

m1
ς

1
m2−1 (x) , x ∈ R

d. (3.22)

Step 4. Contradiction. (3.21)-(3.22) consist of the Lane-Emden system (3.13). How-
ever, it has been proved that there exists no non-trivial classical solution of (3.13) if
m is on L1, which makes a contradiction.

�

Remark 3.7. Let m be on L2, there exists no non-zero minimizer for F in SM1
× SM2

with M1 ≤ M1c.

4. THE GLOBAL EXISTENCE

This section deals with the global solvability of (1.1) in subcritical case. We first
present a local existence and extensibility criterion of free energy solution to (1.1).
Note that this theorem also provides simultaneous blow-up argument in Section 5.

Theorem 4.1. Let m1, m2 > 1. Under assumption (1.2) on the initial data (u0, w0) with
‖u0‖1 = M1, ‖w0‖1 = M2, then there exists Tmax ∈ (0, ∞] and a free energy solution

(u, w) over Rd × (0, Tmax) of (1.1) such that either Tmax = ∞ or Tmax < ∞ and

lim
t→Tmax

(‖u(·, t)‖∞ + ‖w(·, t)‖∞) = ∞. (4.1)

Moreover, let m be subcritical or critical. Then if Tmax < ∞,

lim
t→Tmax

‖u(·, t)‖m1 = lim
t→Tmax

‖w(·, t)‖m2 = ∞. (4.2)

Proof. For (u0, w0) satisfying (1.2), local existence and (4.1) can be proved by ap-
proximation arguments (similar to those in the proof of Theorem 1.1 in [43] for in-
stance). To see (4.2), since the solution is globally solved if both ‖u‖m1 and ‖w‖m2

are uniform bound in subcritical or critical case due to Lemmas 2.3-2.5, then it is
sufficient to show that the two terms ‖u‖m1 and ‖w‖m2 are governed by each other
with some constants.

Since

1

m1 − 1

∫

Rd
um1 +

1

m2 − 1

∫

Rd
wm2 ≤ cdH[u, w] + F [u0, w0], (4.3)

then it needs to control the term H at the right side of (4.3). For m ∈ (1, d/2)
satisfying (3.1), Lemma 3.1 yields that

|H[ f , g]| ≤ η‖ f‖m
m + Cη− 1

m−1 ‖g‖

mm2+2mm2/d−m−m2
(m−1)(m2−1)

1 ‖g‖

m2−2mm2/d

(m−1)(m2−1)
m2

(4.4)
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for some f ∈ Lm(Rd) and g ∈ L1(Rd)∩ Lm2(Rd) with η > 0. If m1 < d/2, choosing
m = m1 in (4.4), then

1

m1 − 1

∫

Rd
um1 +

1

m2 − 1

∫

Rd
wm2

≤cdη‖u‖m1
m1

+ cdCη
− 1

m1−1 M

m1m2+2m1m2/d−m1−m2
(m1−1)(m2−1)

2 ‖w‖

m2−2m1m2/d

(m1−1)(m2−1)
m2

+F [u0, w0]

≤cdη‖u‖m1
m1

+ cdCη
− 1

m1−1 ‖w‖m2
m2

+ C

by Young’s inequality, since

m2 − 2m1m2/d

(m1 − 1)(m2 − 1)
≤ m2

if m1m2 + 2m1/d ≥ m1 + m2 holds. Taking η small enough, we have

‖u(t)‖m1
m1

≤ C‖w(t)‖m2
m2

+ C for t ∈ (0, Tmax) (4.5)

and if η is sufficiently large, we see that

‖w(t)‖m2
m2

≤ C′‖u(t)‖m1
m1

+ C′ for t ∈ (0, Tmax). (4.6)

Therefore, (4.2) holds by (4.1), (4.5)-(4.6).
However, if m1 ≥ d/2, we pick m ∈ (1, d/2) such that

m2

m2 + 2/d − 1
< m < d/2,

and next take interpolation inequality to find that

‖u‖m
m ≤‖u‖

m1−m
m1−1

1 ‖u‖
m1(m−1)

m1−1
m1

.

Upon

m2 − 2mm2/d

(m − 1)(m2 − 1)
< m2,

then (4.4) implies that

|H[u, w]| ≤ η‖u‖
m1−m
m1−1

1 ‖u‖
m1(m−1)

m1−1
m1

+ Cη− 1
m−1 ‖w‖

mm2+2mm2/d−m−m2
(m−1)(m2−1)

1 ‖w‖

m2−2mm2/d

(m−1)(m2−1)
m2

= ηM

m1−m
m1−1

1 ‖u‖
m1(m−1)

m1−1
m1

+ Cη− 1
m−1 M

mm2+2mm2/d−m−m2
(m−1)(m2−1)

2 ‖w‖

m2−2mm2/d

(m−1)(m2−1)
m2

≤ η‖u‖m1
m1

+ η− 1
m−1 ‖w‖m2

m2
+ C

(4.7)

with ‖u‖1 = M1 and ‖w‖1 = M2. Hence (4.5)-(4.6) are valid by picking suitable
η > 0. By the same token, the case m1m2 + 2m2/d ≥ m1 + m2 is also true for both
m2 < d/2 and m2 ≥ d/2. The proof is finished.

�

The global existence result in subcritical case is the subject of our next theorem.

Theorem 4.2. Let m1, m2 > 1. Suppose that the initial data (u0, w0) with ‖u0‖1 =
M1, ‖w0‖1 = M2 fulfills (1.2). Then if m is subcritical, (1.1) has a global free energy
solution given in Definition 1.2.

Remark 4.3. If m1 ≥ d/2 or m2 ≥ d/2, the conclusion in Theorem 4.2 holds for all
m2 > 1 or m1 > 1.
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Proof. In the case m1m2 + 2m1/d > m1 + m2 and m1 < d/2, since m2−2m1m2/d
(m1−1)(m2−1)

<

m2, then Lemma 3.1 warrants that

|H[u, w]| ≤
1

2cd(m1 − 1)
‖u‖m1

m1
+ C‖w‖

m1m2+2m1m2/d−m1−m2
(m1−1)(m2−1)

1 ‖w‖

m2−2m1m2/d

(m1−1)(m2−1)
m2

≤
1

2cd(m1 − 1)
‖u‖m1

m1
+

1

2cd(m2 − 1)
‖w‖m2

m2
+ C

by Young’s inequality. Then substituting (4.3) into above, we have

1

m1 − 1

∫

Rd
um1 dx+

1

m2 − 1

∫

Rd
wm2 dx

≤
1

2(m1 − 1)

∫

Rd
um1 dx +

1

2(m2 − 1)

∫

Rd
wm2 dx + C.

As a corollary,

‖u‖m1 ≤ C and ‖w‖m2 ≤ C. (4.8)

If m1 ≥ d
2 , we recalculate (4.7) carefully and also have (4.8), in which the global

existence of free energy solution is immediate from Theorem 4.1. The other case
m1m2 + 2m2/d > m1 + m2 is similar. �

Also on the critical lines, we obtain global existence results reading as

Theorem 4.4. Let m be on L1, and let (u, w) be a free energy solution of (1.1) with
(u0, w0) satisfying (1.2) on [0, Tmax) with Tmax given in Theorem 4.1. If

M2 < M2c, (4.9)

then Tmax = ∞. The subcritical condition (4.9) will be replaced by M1 < M1c on L2.
Moreover, if m is I, one has Tmax = ∞ if M1 M2 < M2

c .

Proof. We just infer from (1.7) and Lemma 3.3 that

(cdC∗)
m1

m1−1 (m1 − 1)
m1

m1−1 m
−

m1
m1−1

1

(

M

2m1
d(m1−1)

2c − M

2m1
d(m1−1)

2

)

‖w‖m2
m2

≤ F [u, w] ≤ F [u0, w0].

Due to (4.9), there exists C > 0 such that for all t ∈ [0, Tmax) we have ‖w‖m2 ≤ C
. Then the extensibility criterion in Theorem 4.1 makes sure that Tmax = ∞. The
other cases can be similarly obtained. �

5. BLOW UP

Our last section concerns finite-time blow-up phenomenon when m is critical
or super-critical. These results actually show that lines Li, i = 1, 2 are optimal in
view of the global existence for sub-critical case. The following second moment of
solutions can be achieved in a straightforward computation.

Lemma 5.1. Let (u0, w0) satisfy (1.2), and let (u, w) be a free energy solution of (1.1) on
[0, Tmax) with Tmax ∈ (0, ∞]. Then

d

dt
I(t) = G(t) for all t ∈ (0, Tmax),
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where

I(t) :=
∫

Rd
|x|2 (u(x, t) + w(x, t)) dx

and

G(t) :=2d
∫

Rd
um1(x, t)dx + 2d

∫

Rd
wm2(x, t)dx

− 2cd(d − 2)
∫∫

Rd×Rd

u(x, t)w(y, t)

|x − y|d−2
dxdy.

Proof. We differentiate the second moment to see that

d

dt

∫

Rd
|x|2(u(x, t) + w(x, t))dx

=
∫

Rd
|x|2(∆um1 −∇ · (u∇v))dx +

∫

Rd
|x|2(∆wm2 −∇ · (w∇z))dx

=2d
∫

Rd
um1(x, t)dx + 2d

∫

Rd
wm2(x, t)dx

+ 2
∫∫

Rd×Rd
[x · ∇K(x − y)]u(x, t)w(y, t)dxdy

+ 2
∫∫

Rd×Rd
[x · ∇K(x − y)]u(y, t)w(x, t)dxdy.

With K(x) = cd
1

|x|d−2 , we have

2
∫∫

Rd×Rd
[x · ∇K(x − y)]u(x, t)w(y, t)dxdy

=− 2cd(d − 2)
∫∫

Rd×Rd

(x − y) · x

|x − y|d
u(x, t)w(y, t)dxdy

=− 2cd(d − 2)
∫∫

Rd×Rd

|x|2

|x − y|d
u(x, t)w(y, t)dxdy

+ 2cd(d − 2)
∫∫

Rd×Rd

x · y

|x − y|d
u(x, t)w(y, t)dxdy

=− cd(d − 2)
∫∫

Rd×Rd

|x|2

|x − y|d
u(x, t)w(y, t)dxdy

− cd(d − 2)
∫∫

Rd×Rd

|y|2

|x − y|d
u(y, t)w(x, t)dxdy

+ 2cd(d − 2)
∫∫

Rd×Rd

x · y

|x − y|d
u(x, t)w(y, t)dxdy

and

2
∫∫

Rd×Rd
[x · ∇K(x − y)]u(y, t)w(x, t)dxdy

=− cd(d − 2)
∫∫

Rd×Rd

|x|2

|x − y|d
u(y, t)w(x, t)dxdy

− cd(d − 2)
∫∫

Rd×Rd

|y|2

|x − y|d
u(x, t)w(y, t)dxdy

+ 2cd(d − 2)
∫∫

Rd×Rd

x · y

|x − y|d
u(x, t)w(y, t)dxdy.
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Combining above equations, it follows that

d

dt

∫

Rd
|x|2(u(x, t)+w(x, t))dx = 2d

∫

Rd
um1 (x, t)dx + 2d

∫

Rd
wm2(x, t)dx

− cd(d − 2)
∫∫

Rd×Rd

|x|2 + |y|2

|x − y|d
u(x, t)w(y, t)dxdy

− cd(d − 2)
∫∫

Rd×Rd

|x|2 + |y|2

|x − y|d
u(y, t)w(x, t)dxdy

+ 4cd(d − 2)
∫∫

Rd×Rd

x · y

|x − y|d
u(x, t)w(y, t)dxdy

=2d
∫

Rd
um1(x, t)dx + 2d

∫

Rd
wm2(x, t)dx

− 2cd(d − 2)
∫∫

Rd×Rd

u(x, t)w(y, t)

|x − y|d−2
dxdy,

which readily implies the lemma. �

We construct initial data which ensures the nonnegativity of G(0).

Lemma 5.2. Let m be critical or super-critical. There exists initial data (u0, w0) satisfying
(1.2), and fulfilling

(

∫

Rd u

(m1+m2−m1m2)d
2m2

0 dx

)

2m2
(m1+m2−m1m2)d

(

∫

Rd w

(m1+m2−m1m2)d
2m1

0 dx

)

2m1
(m1+m2−m1m2)d

(

∫

Rd u

(m1+m2−m1m2)d
2m2

0 dx

)

2m1m2
(m1+m2−m1m2)d

+

(

∫

Rd w

(m1+m2−m1m2)d
2m1

0 dx

)

2m1m2
(m1+m2−m1m2)d

>







N0, if m1m2 + 2 max{m1, m2}/d ≤ m1 + m2 < m1m2 + 2m1m2/d,

2N0, if m1 + m2 ≥ m1m2 + 2m1m2/d,

(5.1)

and

G(0) < 0, (5.2)

where

N0 =
(d/cd)

2−2/d

21+2/d(d − 2)

(

1 +
2m1

(m1 + m2 − m1m2)d

)(

1 +
2m2

(m1 + m2 − m1m2)d

)

and G is given in Lemma 5.1.

Proof. Consider the following functions having the same compact support as initial
data of form

u0(x) =A

(

1 −
|x|d

ad

)ι1

+

, x ∈ R
d,

w0(x) =B

(

1 −
|x|d

ad

)ι2

+

, x ∈ R
d,

(5.3)
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with

ι1 :=
2m2

(m1 + m2 − m1m2)d
and ι2 :=

2m1

(m1 + m2 − m1m2)d
, (5.4)

where A, B > 0 denote the maximum of the supports and a > 0 denotes the size of
the supports of initial data. Such constructions in (5.3) are inspired by [44, Section
6] which deals with one-single population Keller-Segel system.

In the Case 1: m1m2 + 2 max{m1, m2}/d ≤ m1 + m2 < m1m2 + 2m1m2/d, one
has

∫

Rd
u

m1
0 dx = Am1

∫

Rd

(

1 −
|x|d

ad

)

2m1m2
(m1+m2−m1m2)d

+

dx

= Am1

∫

Rd

(

1 −
|x|d

ad

)

2m1m2
(m1+m2−m1m2)d

−1

+

(

1 −
|x|d

ad

)

+

dx

≤ Am1

∫

Rd

(

1 −
|x|d

ad

)

+

dx

= cdad Am1 /(2d)

(5.5)

and
∫

Rd
w

m2
0 dx ≤ cdadBm2 /(2d).

For the Case 2: m1 + m2 > m1m2 + 2m1m2/d,
∫

Rd
u

m1
0 dx ≤ Am1

∫

|x|<a
1dx = cdad Am1 /d,

∫

Rd
wm2

0 dx ≤ cdadBm2/d.

The coupled term can be estimated as

∫∫

Rd×Rd

u0(x)w0(y)

|x − y|d−2
dxdy ≥ min

|x|,|y|≤a
|x − y|−(d−2)

∫

Rd
u0(x)dx ·

∫

Rd
w0(x)dx

≥a−(d−2)
∫

Rd
A

(

1 −
|x|d

ad

)ι1

+

dx ·
∫

Rd
B

(

1 −
|x|d

ad

)ι2

+

dx

=
c2

dad+2

d2(1 + ι1)(1 + ι2)
AB.

(5.6)

Since

G(0) ≤ cdad Am1 + cdadBm2 −
2c3

dad+2(d − 2)

d2(1 + ι1)(1 + ι2)
AB (5.7)

by (5.5)-(5.6), to show (5.2), it only needs to show the right side of (5.7) is negative
such that

AB

Am1 + Bm2
a2

> N1 (5.8)
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with

N1 =
d2 (1 + ι1) (1 + ι2)

2c2
d(d − 2)

in the Case 1, whereas the right side will be replaced by 2N1 in the Case 2.
Since

∫

Rd
u

1
ι1
0 dx = A

1
ι1

∫

Rd

(

1 −
|x|d

ad

)

+

dx = cdad A
1
ι1 /(2d),

∫

Rd
w

1
ι2
0 dx = B

1
ι2

∫

Rd

(

1 −
|x|d

ad

)

+

dx = cdadB
1
ι2 /(2d)

implies that

A =

(

2d

cd

∫

Rd
u

1
ι1
0 dx

)ι1

a−ι1d, B =

(

2d

cd

∫

Rd
w

1
ι2
0 dx

)ι2

a−ι2d,

then (5.8) can be rewritten as

AB

Am1 + Bm2
a2 =

(

2d
cd

∫

Rd u
1
ι1
0 dx

)ι1 (

2d
cd

∫

Rd w
1
ι2
0 dx

)ι2

(

2d
cd

∫

Rd u
1
ι1
0 dx

)ι1m1

+

(

2d
cd

∫

Rd w
1
ι2
0 dx

)ι2m2

=

(

2d

cd

)
2
d

(

∫

Rd u
1
ι1
0 dx

)ι1 (
∫

Rd w
1
ι2
0 dx

)ι2

(

∫

Rd u
1
ι1
0 dx

)ι1m1

+

(

∫

Rd w
1
ι2
0 dx

)ι2m2

> N1 (or 2N1 for the Case 2) .

Therefore, we have
(

∫

Rd u
1
ι1
0 dx

)ι1 (
∫

Rd w
1
ι2
0 dx

)ι2

(

∫

Rd u
1
ι1
0 dx

)ι1m1

+

(

∫

Rd w
1
ι2
0 dx

)ι2m2

>







N2, if m1m2 +
2
d max{m1, m2} ≤ m1 + m2 < m1m2 +

2
d m1m2,

2N2, if m1 + m2 ≥ m1m2 +
2
d m1m2,

with

N2 =
(d/cd)

2−2/d

21+2/d(d − 2)

(

1 +
2m1

(m1 + m2 − m1m2)d

)(

1 +
2m2

(m1 + m2 − m1m2)d

)

,

which yields G(0) < 0 with N0 = N2. �

The blow-up results state that

Theorem 5.3. Let m be critical or super-critical. Then one can find some initial data
(u0, w0) satisfying (1.2) such that free energy solution (u, w) of (1.1) with (u, w) |t=0=
(u0, w0) blows up in finite time.
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Proof. For a given initial data (u0, w0) in (5.3) satisfying (5.1), then G(0) < 0 from
Lemma 5.2. By the continuity argument, there exists T∗

> 0 such that

G(t) < G(0)/2 for all t ∈ [0, T∗],

where from Lemma 5.1, one obtains d
dt I(t) < G(0)/2 for all t ∈ [0, T∗]. Integrating

by parts, it follows that

I(T∗) < I(0) + G(0)T∗/2. (5.9)

As

I(0) =
∫

Rd
|x|2

(

A

(

1 −
|x|d

ad

)ι1

+

+ B

(

1 −
|x|d

ad

)ι2

+

)

dx

=A
∫

|x|≤a
|x|2

(

1 −
|x|d

ad

)ι1

dx + B
∫

|x|≤a
|x|2

(

1 −
|x|d

ad

)ι2

dx

=cd A
∫ a

0

(

1 −
rd

ad

)ι1

rd+1dr + cdB
∫ a

0

(

1 −
rd

ad

)ι2

rd+1dr

=(cdad+2A)/d
∫ 1

0
(1 − r)ι1 r2/ddr + (cdad+2B)/d

∫ 1

0
(1 − r)ι2 r2/ddr

=(cdad+2AN3)/d + (cdad+2BN4)/d

(5.10)

with ι1, ι2 given in (5.4) and

N3 :=
∫ 1

0
(1 − r)ι1 r2/ddr < ∞ and N4 :=

∫ 1

0
(1 − r)ι2 r2/ddr < ∞,

then inserting (5.7) and (5.10) into (5.9), the right side of (5.9) should be negative if
we may fix small a > 0 such that

T∗

2
·

[

2c3
dad+2(d − 2)

d2(1 + ι1)(1+ ι2)
AB − cdad Am1 − cdadBm2

]

≥ (cdad+2AN3)/d + (cdad+2BN4)/d.

More precisely, if

dT∗

2
·
[ 21+2/d(d − 2)

(1 + ι1)(1 + ι2)

( cd

d

)2−2/d
·

(

∫

Rd
u

1
ι1
0 dx

)ι1 (∫

Rd
w

1
ι2
0 dx

)ι2

−

(

∫

Rd
u

1
ι1
0 dx

)m1 ι1

−

(

∫

Rd
w

1
ι2
0 dx

)m2 ι2 ]

≥

(

2d

cd

)(1−m1)ι1
(

∫

Rd
u

1
ι1
0 dx

)ι1

adι2 N3 +

(

2d

cd

)(1−m2)ι2
(

∫

Rd
w

1
ι2
0 dx

)ι2

adι1 N4,

this leads to a contradiction after time T∗ since I(t) is always nonnegative for all
t > 0. Hence the solutions blow up in finite time. �

If m is I, Theorem 5.3 shows that the blow up condition (5.1) can be written as

M1 M2

Mmc
1 + Mmc

2

>
1

2(d − 2)
·

(

2d

cd

)mc

, (5.11)
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since

d

dt
I(t) = G(t) = 2(d − 2)F [u(t), w(t)] ≤ 2(d − 2)F [u0, w0] = G(0) < 0

if (5.11) holds, then the second moment will be negative after some time and it
contradicts the non-negativity of u and w.

We improve blow-up arguments if m is I by using a different method and sum-
marize the blows up results on the lines L1, L2 and intersection point I as

Theorem 5.4. Let m be critical. Suppose that (u, w) is a free energy solution of (1.1) with
‖u0‖1 = M1, ‖w0‖1 = M2 fulfilling (1.2).

If m is on L1, for sufficiently small size of the supports of (u0, w0) one asserts that blow
up happens if

(

∫

Rd um1/m2
0 dx

)m2/m1 (∫

Rd w0dx
)

(

∫

Rd u
m1/m2
0 dx

)m2
+
(∫

Rd w0dx
)m2

> N0

with N0 given in Lemma 5.2.
If m is on L2, for sufficiently small size of the supports of (u0, w0) blow-up solution can

be constructed if
(∫

Rd u0dx
)

(

∫

Rd w
m2/m1
0 dx

)m1/m2

(∫

Rd u0dx
)m1 +

(

∫

Rd w
m2/m1
0 dx

)m1
> N0.

If m is I, blow up occurs if

M1 M2/(Mmc
1 + Mmc

2 ) > M2/d
c /2.

Finally, let (u, w) blow up in finite time Tmax. Then Tmax < ∞ implies that

lim
t→Tmax

‖u‖m1 = lim
t→Tmax

‖w‖m2 = ∞.

Proof. The asserted blow-up conditions on the lines L1 and L2 just follow from
Lemma 5.2 and Theorem 5.3. If m is I, note that for any M∗

1 > 0 and M∗
2 > 0 such

that

M∗
1 M∗

2 /(M∗mc
1 + M∗mc

2 ) = M2/d
c /2, (5.12)

there exists nonnegative function (u∗, w∗) with ‖u∗‖1 = M∗
1 ,‖w∗‖1 = M∗

2 fulfilling
F [u∗, w∗] = 0.

This can be seen by the fact that Cc in (3.6) is

Cc = sup
f 6=0

{

H[ f , f ]

‖ f‖2/d
1 ‖ f‖mc

mc

, f ∈ L1(Rd) ∩ Lmc(Rd)

}

from Theorem 3.4. From [6, Proposition 3.3], for any M∗
1 > 0 there exists non-

negative, radially symmetric and non-increasing function u∗ ∈ L1(Rd) ∩ Lmc(Rd)
with ‖u∗‖1 = M∗

1 such that

‖u∗‖mc
mc

= C−1
c ‖u∗‖−2/d

1 H[u∗, u∗]. (5.13)

Define w∗ = M∗
2 /M∗

1 u∗. Then w∗ ∈ L1(Rd) ∩ Lmc(Rd) with ‖w∗‖1 = M∗
2 and

F [u∗, w∗] =0
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by (5.12) and the definition of Mc. Then

cdH[u∗, w∗] = cd M∗
2 /M∗

1H[u∗, u∗] =
1

mc − 1

(

1 +

(

M∗
2

M∗
1

)mc
)

‖u∗‖mc
mc

.

Given u0 = M1
M∗

1
u∗ and w0 = M2

M∗
2

w∗ with ‖u0‖1 = M1 and ‖w0‖1 = M2, then

F [u0, w0] =
1

mc − 1
‖u0‖

mc
mc

+
1

mc − 1
‖w0‖

mc
mc

− cdH[u0, w0]

=
1

mc − 1

[(

M1

M∗
1

)mc

+

(

M2

M∗
1

)mc

−
M1 M2

M∗
1 M∗

2

(

1 +

(

M∗
2

M∗
1

)mc
)]

‖u∗‖mc
mc

<0,

since

M1M2/(Mmc
1 + Mmc

2 ) > M∗
1 M∗

2 /(M∗mc
1 + M∗mc

2 ) = M2/d
c /2.

If (u, w) is corresponding free energy solution with the initial data (u0, w0), then

F [u(t), w(t)] ≤ F [u0, w0] < 0, t > 0

by the decreasing property of F . From Lemma 5.1, it follows that blow up occurs.
To see the simultaneous blow-up phenomenon, from extensibility criterion in

Theorem 4.1 we have

C‖w(t)‖m2
m2

+ C ≤ ‖u(t)‖m1
m1

≤ C′‖w(t)‖m2
m2

+ C′ for t ∈ (0, Tmax)

with some C > 0 and C′
> 0 if m is critical. Then all assertions have been proved.
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[30] H. Knútsdóttir, E. Pálsson, L. Edelstein-Keshet, Mathematical model of macrophage-facilitated

breast cancer cells invasion, J. Theor. Biol. 357 (2014) 184–199.
[31] E.H. Lieb, Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities, Ann. Math.

118 (1983) 349–374.
[32] E.H. Lieb, M. Loss, Analysis. In: Graduate Studies in Mathematics, vol. 14, 2nd edn. American

Mathematical Society, Providence (2001).
[33] E. H. Lieb, H.-T. Yau, The Chandrasekhar theory of stellar collapse as the limit of quantum me-

chanics, Comm. Math. Phys. 112 (1987) 147–174.
[34] K. Lin, T. Xiang, On global solutions and blow-up for a short-ranged chemical signaling loop, J.

Nonlinear Sci. 29 (2019) 551–591.

http://arxiv.org/abs/2004.10132


THE CRITICAL LINES FOR A CHEMOTAXIS SYSTEM 39

[35] K. Lin, T. Xiang, On boundedness, blow-up and convergence in a two-species and two-stimuli
chemotaxis system with/without loop, Calc. Var. Partial Differential Equations 59 (2020), doi:
https://doi.org/10.1007/s00526-020-01777-7.

[36] P. L. Lions, The concentration-compactness principle in calculus of variations. The locally compact
case, Part 1, Ann. Inst. H. Poincaré 1 (1984) 109–145.
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